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Abstract

Prior to maturity, industries exhibit a period in wich the number of firms
is significantly reduced: the shakeout. This is not a period of decay of the
industry, but rather a period where output continues to expand at a consid-
erably high rate. This regularity has been also evidenced in the evolution of
organizational populations and is central to the emerging field of organizational
ecologies in sociological studies. This paper develops an economic model of in-
dustry evolution which provides some explanations for this observed shakeout.
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1 Introduction.

Prior to maturity, industries exhibit a period in which the number of firms is
significantly reduced: the shakeout. This is not a period of decay of the indus-
try, but rather a period where output continues to expand at a considerably
high rate. This regularity has been also evidenced in the evolution of orga-
nizational populations and is central to the emerging field of organizational
ecologies in sociological studies. This paper develops an economic model of
industry evolution which provides some explanations for this observed shake-
out. '
In a study of the evolution of 46 new products, Gort and Klepper (1982)
find an average rate of shakeout of firms - measured by the number of firms
after the decrease relative to thepeakeafzanghly 40%. This shakeout occurs
after a short period of relative stability which in turn follows a period of sharp
increase in the size of the industry. In turn, sociological studies of several
industries and populations of organizations, such as trade unions, argue that
as these populations mature, competitive forces dominate and the survival of

members of these populations decreases.!

In this paper we develop a dynamic model of the evolution of a competitive
industry. We consider two alternative forces of industry expansion. The
first one is given by demand expansion and the second one by cost reducing
technological change. As we find, both of these provide a rationale for the.
shakeout, but for quite different reasons. Consider first demand expansion.
The typical evolution of an industry suggests that demand growth is not
constant and that after a period of take-off the rate of growth slows down.
The period of high demand growth is a period of high entry. Limited by
scale, incumbents cannot satisfy all the demand increase. But if the average
size of incumbents tends to increase through time, as demand growth slows
down this source of supply expansion may exceed the demand increase. As a
consequence, the less efficient firms are squeezed out of the market.

We consider two sources of growth in the average size of firms. The first
is stochastic evolution, a variant of stochastic learning by doing. The second
one is selection: as good firms are sorted from bad ones, the average quality
(or productivity) of firms in the industry increases. As demand slows down

1As indicated by Hannan and Carroll, " Organizational populations initially grow slowly
from zero, increase very rapidly over a brief period, reach a peak, and the often decline
moderately before stabilizing for some, usually extended, period.”




and entry decreases, the age distribution of firms starts shifting away from
the younger firms. These are in turn the smaller firms, as is now widely
documented in the empirical studies of establishment growth (see for example
Dunne, Roberts and Samuelson (1989) and Davis and Haltiwanger (1991)).
This change in the age distribution implies an increase in the average size of
firms.

Theories of firm and industry evolution based on the idea of stochastic
growth and selection have been recently developed, following the original work
of Jovanovic.? The model used in this paper is based on Hopenhayn (1992b).
The implications of stochastic evolution are developed in section 3.1. Selection
is studied in section 3.2. We establish that (1) industries with faster diffusion
processes will tend to exhibit a larger shakeout; (2) industries where selection
1s more important, will also exhibit a larger shakeout, and (3) the larger is
the gap between the average size of firms in the industry and the avefage
size of entrants, the larger the shakeout will be. To test the quantitative
significance of this theory, section 3.4 discusses a method to assign values
to the parameters in the model and provides some numerical results. These
results suggest that the theory can explain a sizable degree of shakeout.

The theories of industry expansion based on cost reduction are analyzed in
section 4. Cost reduction increases the optimal scale of firms and thus the sup-
ply of incumbent firms. In a competitive market with free entry, these lower
costs are translated into lower prices. As a consequence demand expands.
How much of this expansion can be met by the larger output of incumbent
firms, will determine whether the total number of firms will increase or de-
crease. This depends on the elasticities of demand and supply. The evidence
from Gort and Klepper suggest that demand elasticity decreases as the in-
dustry expands. The period of shakeout would then correspond to a stage
with lower elasticity, where demand growth falls short of the supply increase,
so some incumbents are crowded out. This model is developed in section 4.1
and the corresponding numerical calculations developed in section 4.2.

While the technological change considered in the previous paragraph is
exogenous to the firms, section 4.3 considers a situation in which firms can, in
addition, make investments in improvements. These improvements are spe-
cific to a technology. As the pace of exogenous technological change decreases,
the incentives for firms to invest in these specific improvements increases.

?See for example Pakes and Ericson(1990) and Hopenhayn (1992a,1992b).



Those firms that are more successful with these projects obtain a competitive

advantage, while the less successful ones exit the industry.

While the importance of costs and demand considerations have been
quite studied and are well understood as determinants of market structure,
very little theoretical work has been done in providing a link to industry
evolution.® As important exceptions, two recent contributions to this field
deserve particular consideration. Jovanovic and MacDonald (1992) develop a
theoretical model to study the evolution of the tire industry, which exhibited
a path for the number of firms quite characteristic of the Gort and Klepper
type. In their model the shakeout is produced as some firms develop cost
advantages and consequently a much larger efficient scale, crowding out the
firms with higher costs. Petrakis, Rasmusen and Roy (1993) model more
explicitly the cost reducing investments through learning by doing. They
show that if demand and economies of scale are such that the market will not
support all firms in the long run, some firms will invest more in learning by
doing than others and consequently survive longer. The model we develop in
section 4.3 shares some of the features of these two contributions.

The paper is organized as follows. Section 2 discusses in more detail
the evidence from Gort and Klepper. Section 3.1 develops the demand based
theories. Section 4 develops the theories based on cost reduction. Finally,

section 5 concludes.

2 The Evidence.

In a study of the history of 46 new products, Gort and Klepper (1982) identify
5 stages of evolution. Figure 1 reproduces a plot included in their paper which
gives the evolution of the number of firms for a 'representative’ industry.
The 5 stages I-V are defined in terms of net entry. Gort and Klepper (GK)

characterize these stages as follows:

Stage I encompasses the interval in which the number of producers
in the market remains relatively small (usually between one and
three). Stage II is the interval from the "take-off” point of net

3The selection models developed following Jovanovic (1982) have focused mostly on firm
dynamics, without much consideration for the implications on industry evolution.
“It should be noted that the variance of the 46 industry experiences is quite high.




entry to the time that net entry decelerates drastically. Stage III
is the ensuing period of low or zero net entry, and Stage IV is the
subsequent period of negative net entry. Stage V represents the
new equilibrium in the number of producers that coincides with
the maturity of the product market and continues until some new
fundamental disturbance generates a change in market structure.

In this paper we focus mostly on stages II-IV, where most of the inter-
esting dynamics takes place. More specifically, we will concentrate on stage
IV, the period of shakeout. In any case, some of the characteristics of the re-
maining stages will be important in evaluating the theories developed. Table
1 summarizes the information for stages II-V which are mostly relevant to our

analysis.

Table 1: Entry, Growth and Price Evolution.

Stage Mean Duration Mean annual~ mean annual  mean annual

entry rate ¢ growth rate price decrease
II 9.7 years 24.8% 35% -13%
I 7.5 years 0.2% 12% -1%
IV 5.4 years -9% 8% -9%
vV - -0.5% 1% -5.2%

Computed from the data presented in Gort and Klepper

Stage II, the period of take-off, is characterized by high rates of entry,
output growth and priée decrease. In Stage III output continues to grow and
prices decrease, but at more moderate rates. Most importantly, the number
of firms remains constant. Stage IV, the shakeout, is characterized by a
reduction in the number of firms. Note that this period does not correspond
to the decay of the industry, since output continues to grow. It seems to be
more a stage of consolidation of the industry towards its maturity. Stage V
exhibits almost no change in the number of firms and very slow output growth

with a moderate rate of price decrease.
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3 Demand Growth: Stochastic Evolution and
Selection.

In this section we consider demand growth as the source of expansion of the
industry. Throughout the section we take the process of demand growth for
the product as exogenous.

Studies of product development in the marketing literature seem to agree
that the growth of a market is well approximated by a logistic diffusion curve.
After a takeoff, there is a period of sustained growth. Yet market growth
tends to slow down thereafter, reaching a peak at some point in the history
of the product which varies across experiences. In this section we show that a
demand process with these characteristics combined with very plausible types
of firm heterogeneity can explain a period of shakeout following a decrease in
the rate of demand growth.

Section 3.1 emphasizes the role of stochastic growth of firms as a source
of heterogeneity. Section 3.2 emphasizes the role of selection - the sorting
of good and bad firms by entry and exit - that results from heterogeneity.
Finally, Section 3.4 considers some numerical computations, where parameters
are assigned values to match observations corresponding to manufacturing
industries. The model described in these sections is based on Hopenhayn
(1992a,1992b). '

3.1 Stochastic Evolution: An example.

Consider the following simple model of a competitive industry. Firms in the
industry produce a homogeneous product according to a variable cost function
c(s,z), where = denotes the output of the firm and s a productivity shock
which takes values {s;,s2,53}, where s; > s3 > s3. Assume that dc/0s < 0
and dc/8sdz < 0, so firms with higher s will be more profitable and choose
higher output. The productivity shock is entirely firm specific and for each
firm follows a markov process with transition function

. A 1-A-6 8
— ) P=|1-2-0 A 6
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and initial distribution v = (v1,v2,v3). A firm that enters the industry can
be thought of as making a draw for its initial parameters s(0) from the dis-
tribution v. If it decides to stay in the industry its productivity state for the
next period will evolve according to the transition matrix P. The parameter A
measures the degree of persistence of a productivity shock and, as established
below, @ corresponds to the death rate of firms.

All entrants bear a cost of entry ¢, which is made prior to observing s(0)
and a fixed or opportunity cost ¢; per period while the firm remains in the
industry. We will assume that the optimal scale of firms is small relative
to aggregate industry demand so at any point in time there will be a large
number (continuum) of firms in the industry. Aggregate industry demand is
given by a strictly decreasing inverse demand function p,(Q:) where Q; is the
aggregate output of the industry in period ¢. .

The timing of decisions is as follows. At the beginning of a period, in-
cumbent firms observe their shocks and first decide whether to stay in the
industry or leave. Likewise, those potential entrants who decide to enter the
industry pay their entry costs and draw-their initial productivity shocks. All
the firms that decide to stay in the industry will be producers during that
period. Prices are determined competitively. Firms collect their profits and
the period is over.

It is convenient to consider the case where the equilibrium price remains
constant through time at a level p®. This characterizes a stationary equilib-
rium. Suppose that for any price p > 0 there exist well defined profit functions
7;(p) and supply functions ¢;(p) for i = 1,2,3. Note that profits are net of
the fixed cost, so for some ¢ can (and will) be negative. The value of a firm

of type s; is given by
Vi(p) = max (0, mi(p) +6 Zp-'jVj(p)) (1)
j

where the value of exiting the industry is normalized to zero. Assume that
the parameter values are such that Y > V, > V3 = 0, so only firms with
productivity shocks s3 exit (later we provide conditions under which this
holds true). The values of the other two types of firms will be

Vi(p) = mi(p) + 6 (\Va(p) + nVa(p)) (2)



and
Va(p) = ma(p) + 6 (AVa(p) + nVi(p)), (3)

where = 1—A—#6. It immediately follows that Vi(p) > Va(p) > Va(p). Finally,
Va(p) will be equal to zero provided that

3(p) + 6Va(p) < 0. (4)
The value of an entrant will be given by
Vi(p) = nVa(p) + v Va(p). (5)

In a free entry equilibrium, V¢(p) —c. < 0 and if the inequality is strict, there

is no entry. It can be easily established that there is a unique value p® such
that V¢(p°) = c.. (See Hopenhayn, 1992b).

Consider the evolution of a cohort of entrants with total mass one. In
the first period, after exit takes place, only a fraction v; + v, of the initial
entrants will stay, with probability weights given by u, (—1— ~22

m:'lq Yute? 0)
At the beginning of the following period, a fraction 8 exit and the probability

distribution of those firms of age 1 that stay is given by

_ Avy + iy i+, |
= ((1 =01 +v2)" (1= 0) (1 + 1)’ ) ' (©)

So letting p(i) denote the fraction of firms of age t with shock s; and p, the
proportion of firms in the cohort that are still in the industry after ¢ periods,

pe=(1— Q)'PO, where po = 11 + 1, (7)
and \
per1(2) — pepa (1) = ﬁ (1e(2) — p(1)) 8)

These distributions converge to the limiting distribution (%, ;1,-,0) . It follows
from (8) that if »; < vy, u,(1) increases while #¢(2) decreases. This we shall
assume. ‘

Consider now the special case in which c(s,q) = (%;—) . Given a price p for
the good in the industry, the corresponding supply and profit functions are




q(s,p) = sp and w(s,p) = &;—’— The value functions
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Wilp) == -+ § (AVi(2) + nVa(p)) (9)
Vilp) = Z2 = ¢/ + 5 OVa() + 14(p) (10)
and \
E_ (s; — S
V(o) — Valp) = 1k (1)

Since s; > s3, it follows that Vi(p) > Va(p)-

We will describe an equilibrium where there is positive entry (and exit)
every period.® The expected value of an entrant, ve(p) = nVi(p) + v2Va(p)
must then equal the cost of entry. For convenience, we set the cost of entry
so that V(1) = c. and ¢y, 51,52 and s3 so that Va(1) > V3(1) = 0.

In any period, total industry output will be the sum of the output of all
firms in the industry. Let m, denote the number (mass) of new firms that
enter in period {. After k periods, pim. firms in this cohort will still be in the
industry with an average output g = pr(1)s: + £x(2)s2, where we have used
the fact that p = 1. Total output in the industry in period ¢ must satisfy

3 me—ipigi = po )_me-i(l — 0)'qi = Qu (12)
i=1 i=1

where Q. satisfies pi(Q:) = 1.

Consider an industry where demand grows each period at aratey—1 2 0,
that is p(Q) = p(%) for all t. The long run equilibrium for this economy can
be constructed as follows. Conjecture that at this long run equilibrium the
number of entrants will grow at the rate v, so m; ='mg for some fixed mo > 0
and Q; = 7'Qo where p(Qo) =1 and thus p(Q.) = 1 for all £. Then ast — oo

© (1-6)’
Qo = 97' = pomo ) (——> g;- (13)
v 5=0 8|

This is well defined even in the case v = 1 since g; is bounded above by its
limiting value (s; + 52)/2 and 0 < 9 < 1. Letting M, denote the total number

5This is characteristic of most US industries. For manufacturing, the average rates of
entry and exit exceed 40Most of this entry and exit is not accounted for by intersectoral
movements but occurs within fairly disaggregated product classes (4 digit SIC codes).



of firms in the industry in period t, as t — o0

M, o (1 —())" f
2t = pem =) 14
v p? 0,};6 . (14)

For a fixed market size, the number of firms is inversely related to the
average size of firms. Changes in the average size of firms will play a crucial
role in producing the shakeout. We now analyze some key determinants of

average firm size. As{ — oo, average output per firm converges to

Qi Yo (%)j 95
M, s (1_—_4)’ '

20 p-

(15)

As shown in the appendix there is a simple solution to the above, given by

Qe _, [(1=0) = Al(s1 = 52) (ko(2) — po(1))
M y— (22— (1-9) (19)

where ¢o is the average size of entering firms.

From equation (16) it follows that the average size of firms decreases with
6 and v: higher death rates or higher demand growth increases the weight
of younger firms, which are smaller. It also follows that for fixed 6, average
size decreases with . Thus average firm size will increase with the degree of
mobility 7. _

The empirical evidence on diffusion curves indicates that the rate of ex-
pansion of markets is decreasing. With demand based expansion, this means
that demand grows at a decreasing rate. Consider as an extreme the situation
where demand grows at a constant rate ¥ and ceases to expand after some
period T. If T is large, average firm size at T will be approximately equal to
the value indicated by equation (15). But since growth ceases afterwards, as

t — oo average size converges to

Qu _ ZRo(1=0Vqi _ . [(1=0)= N (s —s2) (ko) = me(1)) 4y
Mo Too (-0 1-(2\— (1 —06) ‘

which is larger than the average size at T. Since total output remains constant
after period T, the number of firms decreases to converge to its asymptotic

value. This is the shakeout.




Dividing equation (16) by equation (17) we obtain an expression for M.,/ Mr.
The magnitude of the shakeout depends on characteristics of the demand pro-
cess and the stochastic process for firm shocks. The following proposition gives

some comparative statics results.
Proposition 1 Let sk =1— %’,—m Then
T

1. Osk/dv > 0,
2. 0sk/36 <0

3. For qo fized, 3sk/0(sy — s2) > 0 and 9sk/d (1o(2) — po(1)) > 0.

Industries with a faster diffusion process will tend to exhibit a larger shake-
out. Industries with larger attrition rate will exhibit a lower shakeout. The
larger is (s; — s2) or po(2) — po(1), the larger the gap between the average
size of firms and the average size of entrants, and also the larger the shakeout
will be. Consider now the effect of persistence. If A = (1 — 8), there is no
mobility, the average size of firms is constant and thus there is no shakeout.
For A < 1, there is a positive shakeout. This indicates that, at least for values
of A close to 1, there is a negative relationship between persistence and the

degree of shakeout.

3.2 - The Selection Effect.

The example considered above emphasized the role of mobility. The example
presented here emphasizes the role of selection, the process by which firms
are sorted in the market. Consider a transition matrix of the following type:

A0 1=
P= 0 )\2 I”Az
0 0 1

The state s3 is absorbing and there is no mobility between the other two
states. The parameter J;, { = 1,2 measures the rate of survival for firms of
type 1. We will assume that A; > ),, so that the rate of survival is higher for
larger firms, which is also a well established empirical fact. This implies that
Vi > Vo > V4. As in the previous section we will assume that V5 = 0.
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The difference in survival rates implies that (1), the fraction of firms of
type 1 increases over time. Consequently the average size of firms in a given

age cohort j
_ Muo(1)s1 + Mpo(2)s, a8)
T Muo(1) + Mpo(2)
also increases with the age of a cohort.
Consider a market in which demand grows at a constant rate ¥y—120
and conjecture that along the equilibrium path entry grows at the same rate

while price remains constant at one. It is quite simple to establish that as

t — 0o, the average size of firms in the industry

& - po(1)(y — A2)s; + I‘O(z)('f — A1)s2 (19)
M, po(1)(7 = A2) + po(2)(y — 1)

It follows easily that average size is decreasing in v, increasing in \; and
decreasing in J,.

As in the previous section, we can derive the ratio between the limiting
number of firms and the number at the peak, for an industry that exhibits
constant demand growth up to period T and stable demand thereafter. This
is given by

Mo _ (#0(1)(7 — A2)s1 + po(2)(v — )32) (#o(l)(l = A2)s1 + po(2)(1 - /\1)32) .

B My #o(1)(7 = A2) + #o(2)(v — M) #o(1)(1 = Az) + ”°(2)(z25f‘)

The following Proposition provides comparative static results similar to those

given in the previous section.
Proposition 2 Let sk =1 — —’5;“ Then
1. dsk/dy > 0,
2. 0sk/OA >0 and dsk/d\, < 0,
3. 0sk[8(s; ~ s2) > 0 and dsk/8(po(2) — po(1)) > 0.

These results are consistent with those obtained before. Part (1) implies
that industries with faster diffusion processes will tend to exhibit a larger
shakeout. Part (2) implies that industries where selection is more important,
will also exhibit a larger shakeout. Finally, part (3) implies that the larger is
the gap between the average size of firms in the industry and the average size
of entrants, the larger the shakeout will be.

11




3.3 Discussion.

The analysis carried out in the last two sections generalizes to a much
broader setup. Two ingredients were key to generating the shakeout: (a)
the increase in average firm size as a function of age; (b) the decrease in
the rate of growth of aggregate demand. Both of these seem well supported -
by the data. The rise in average firm size is a well established empirical fact
(references). The empirical evidence on the diffusion of new products suggests
that diffusion curves are typically log concave, thus exhibiting decreasing
expansion rates(references).

The results provided above correspond to the comparative static analysis
of long run equilibria. We now show that under a mild regularity condition,
we can in fact construct the entire equilibrium path. This method is the one
used for the computations discussed in the following section.

Assumption 1 The sequence P;iq; is decreasing in the age j of a firm cohort.

If m, firms enter in period ¢, the total output of that cohort j periods
‘after entry will be mp;q;. So this assumption implies that the total-output
contributed by a given cohort of firms decreases over time. According to
the data provided by Dunne, Roberts and Samuelson this seems to hold for
manufacturing, taking periods of 5 years as the unit time interval. The role
of this assumptioh 1s to guarantee that the equilibrium is interior, ti.e. that
m, > 0 for all ¢, so the equilibrium price remains constant.

For a fairly general class of industry equilibrium models (see Hopenhayn
1992a) there is a unique price p° such that V¢(p*) = c.. Assuming that the
inverse demand function is strictly decreasing in total output, define the out-
put sequence Q; by setting p* = p,(Q;). Suppose that Q, is a non decreasing
sequence. This is obviously the case of interest here. Let d; = pjq;. Choose
™Mo so that medo = Qo. Given a sequence of entries mg, my, ..., M choose m,

so that
t—1

mgo + ijtﬁ—j = Q. (21)

j=0

By Assumption 1 §; is a decreasing sequence so

t-1 t—1
Z m;gi—; < ijqt—j—l = Qi-1. (22)
Jj=0 Jj=0

12



This guarantees that m, > 0 and thus the equilibrium is interior. Further-
more, using Theorem 2 in Hopenhayn (1990) it can be established that thjs
is the unique equilibrium.

3.4 Numerical Results.

In the analysis of the previous sections, the precise characteristics of the
process of demand growth and stochastic evolution of firms play a critical
role. We have established that a model based on demand growth and firm
heterogeneity can generate a shakeout. But how much of a shakeout can it
realistically explain? This section attempts to provide a preliminary answer
to this question. We discuss a method to assign parameter values and provide
numerical computations of the shakeout. .

The Technology of Firms. The cost function considered above can be
derived from a homogeneous production function

sn®

9= f(s,n) = = (23)
for a = , taking n to be the amount of a single homogeneous input (labor)
with a market price which is given to the industry and normalized to one. For

a constant price, this function gives a labor demand function of the form:

1 (o
l—aln(p)+l—a

In n(p,s) = In(s). (24)

This formulation has the convenient feature that, assuming prices are constant

- (which is true in the model), one can calibrate the process for In(s;) from

evidence on employment growth of firms.

As described in detail in Hopenhayn and Rogerson (1991) and Hopenhayn
(1992b), assuming the In(employment) of firms follows an AR1 process with
normally distributed innovations of the form

In(nit) = a+ pln(ni1) + €, (25)

where p is the persistence parameter and ¢;, is normally distributed with zero
mean and variance o7, then the corresponding process for In(s;,) is given by

In(si) = a' + pln(sie-1) + €, (26)

13



where a’ is a constant depending on a,p and « and €, is also normally dis-
tributed with zero mean and variance equal to (-‘—;—")2 o. Given estimates of
equation (25) we can derive the persistence and the variance of innovations
for the process for In(s;).

Estimates for p and 2 were obtained for a panel consisting of all establish-
ments recorded in both the 1972 and 1977 Census of Manufactures.® These
values are .93 and 0.53, respectively. The time period of 5 years is too long
for the purpose of our analysis. The numerical results presented below are
done considering a time period of 1 year, instead. We annualize the above
process in the natural way, making the assumption that the yearly process is
also an AR1 process with normal innovations. The level of persistence we use
is (.93)!/® and the variance for the yearly innovations obtained in the obvious
way. Unfortunately, this procedure is subject to a selection bias that results
from the exit option: survivors are more likely to have received good news
in the past. Consequently, we may interpret this persistence parameter as an
upper bound.

The values for the rest of the parameters were chosen as described in
Hopenhayn (1992), by matching the model’s predicted values to the data on
entry/exit rates, average size of firms and size distribution for entrants.

Demand Process. To model demand expansion we consider the follow-
ing diffusion process which is widely used in the literature:

Q(t) = e¢—=" (27)

with parameters ro and c. The asymptotic level In(Q(o0)) = %, the growth

rate is dl

with value ry at ¢t = 0 and decay given by c. Keeping ro/c constant, the speed
of diffusion depends on this single parameter c. For simplicity, we fix ro/c = 1.

To choose values for ¢, note that

In (@%) = -ic‘le-c' = —e. (29)

Different values for ¢ where chosen so that demand reaches maturity (defined

1 am grateful to John Haltiwanger for providing these estimates.
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Table 2: Numerical Results.
t(90%) Period at peak Shakeout

5 ) 66.3%
10 9 59.1%
15 13 52.8%
20 17 46.8%
30 23 36.0%
40 30 26.2%

here as 90% of its asymptotic value) in periods {5,10, 15,20, 30,40} .

Before discussing our results it is important to point out that our inten-
tion here is not to provide an exhaustive empirical test of the model. We

are combining very different data sources and considering values which are

averages of the histories of many diverse industries. Qur purpose is rather to
get some orders of magnitude to see whether the selection hypothesis may be
an alternative worth considering when studying industry evolution, growth

and consolidation.

Results. The results are presented in Table 2 and F igure 2. Table 2 gives
the year at which the number of firms is at its maximum and the amount of
shakeout for the demand diffusion processes considered above. The shakeout
1s considerable in all cases and is larger the faster the diffusion process is.
This is consistent with the results obtained in the previous sections. Note
also that the peak in the number of firms occurs in all cases before demand
reaches 90% of its limiting value, but more so when diffusion is slower. Figure
2 plots the diffusion curve and the evolution of the number of firms for the
case where diffusion is the slowest (40 years). It is worth emphasizing that
it not only matches the shakeout, but also the other characteristics of the

evolution of the number of firms discussed in section 2.

4 Market Expansion by Cost Reduction.

In this section we explore the implications of cost reduttion as a determinant
of market expansion. Aggregate demand for the industry is given by the time
invariant inverse demand function p(Q:). As before, the cost of production
of an individual firm may depend on its productivity shock s and a market-
wide technology level 4, as given by the cost function c(s,z/7), where 7, is a
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nondecreasing sequence. In this section all technological progress is exogenous
to the firm and accessible by both, incumbents and potential entrants. Section

4.3 considers firm specific cost reduction.

4.1 Demand Elasticity and Crowding out.

Though in this section demand does not play an active role in the expansion
of market size, it has important implications on the evolution of the number of
firms. As production costs are lowered, the market equilibrium price decreases
and total demand in the industry expands. There are two sources for the
supply expansion, the increase in the output of incumbent firms and the
increase in the number of firms. The elasticity of demand will determine
what the total expansion of demand is, and whether the first source of supply
expansion suffices or not. ‘

To illustrate the mechanics of market expansion, consider a special case
where there is no idiosyncratic productivity shock, so all firms are identical.
Let 7(v,p) and g(v,p) denote the individual profit and supply functions of
firms. To begin, assume that entry is free (c. = 0), so the unique equilibrium
price in each period satisfies w(v¢,pf) = 0. Assume that the inverse demand
function is strictly decreasing and define the total output sequence @ to be
the unique solution to p; = p(Q:). The number of firms producing in the
industry is given by m; = Q./q(v:, p¢)-

We now derive more explicitly these equilibrium sequences using the spec-
ification of cost function and technological progress given above. The output
function is obtained by equating marginal cost to price, i.e.

1
P: = 02(3,1‘!/%);, (30)

where s is common to all firms and constant throughout. The zero profit

condition for each firm requires that
pize —c(s,zefm) — ¢y = 0. (31)

Normalizing 40 = 1, let zo be the unique solution to (30) and pg the unique
price that makes net profits zero in the initial period. Let p; = p§/7: and
Z¢ = zoY- It is easy to check that these are the unique values which satisfy
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the above two equations. It thus follows that

Pi_ _ v _ 9(ve, Pisy) (32)
Pit1 7t q(7e, P7)

Equation (32) summarizes all the relevant information about the equilibrium
path: prices must drop at the same rate at which the output of incumbent
firms expands. If demand elasticity exceeds one, total demand will increase
at a faster rate and positive net entry will occur. Alternatively, if demand
elasticity is less than one, net entry will be negative and the number of firms
will decrease. Letting e, denote the absolute value of demand elasticity in

period ¢, then

My — My g(et_l)"lwl""ﬁ o (l _L) QH-I_Qt. (33)
m; ] € Qt

If elasticity decreases as price goes down, there can be a period of net entry
to the industry followed by a period of net ezit. This is indeed the case with
a linear demand curve: as the market-reaches half of its maximum potential
size, demand growth fails to be enough to absorb the increasing supply of
incumbent firms and crowding out occurs.

From the information contained in Table 1 and assuming a time invari-
ant demand function, an estimate of demand elasticity in each period can be
obtained. Denoting by ern, e and ery the elasticities for periods II, 11T
and IV, respéctively, the values thus obtained are: e;; = 2.7, errp = 1.7 and
erv = 0.9. So the elasticities are aligned correctly around 1 to match the quali-
tative implications of the cost reduction explanation. To obtain a quantitative
estimate we can replace output growth and the elasticity figure in (33) to ob-
tain predicted values for the rate of entry. The values obtained this way are
18%,5% and —1% for periods II, 111 and I V, respectively. The true values
are given in Table 1. The shakeout turns out to be largely underestimated.

Consider now the more general case where firms face idiosyncratic uncer-
tainty and there is a positive entry cost. The sequence of entries {m} can
be obtained by modifying slightly equation (21) as follows. As before, let q;
denote the average output of the cohort of firms of age j for y =49 =1 and
let p; be the proportion of firms in that cohort that have survived j periods.
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Then

t-1

mYego + e Z m;q—; = G, (34)

y=0

where Q, is defined by p(Q¢) = po/m and po is the stationary equilibrium
price for an industry with no technological change and 7 = 7. Provided that

t-1 )

Yt Emj‘it—j < Qy, (35)
1=0 '

the nonnegativity constraint on entry is satisfied and the allocations thus

constructed give the unique equilibrium for the industry.

4.2 Some more numerical computations.

Using the calibrated model described in Section 3.4 and the procedure for
constructing the equilibrium entry sequence described above, we can obtain a
predicted series for the number of firms. To derive the sequence «, we use the
data on evolution of average real prices given in Table 7 of Gort and Klepper
(GK) . We also use the numbers they provide on average output growth (Table
5 of GK) to construct the sequence Q..

Figure 3 plots the results obtained. The simulations where made starting
at the beginning of stage II (year 15). Since GK only provide average values
for output growth and price decrease for each of the stages, two alternative
approaches were followed. As a first alternative, we constructed the series Q;
and 7; keeping growth and price decay constant and equal to the mean rate
for each stage. The broken line gives the evolution of the number of firms for
this case. Alternatively, we used a smooth approximation to interpolate the
series @, and ¢, which resulted in a smooth evolution of the number of firms
as given by the solid line.

The predicted average growth rate of the number of firms in stage Il is
approximately 18% for both cases, somewhat below the average rate for the
GK data (24.8%). For stage III the model predicts a very small expansion in
the number of firms, averaging roughly 1% per year. The corresponding rate
in the GK data is 0.2%. In stage IV (the shakeout) we obtain a rate of decrease
in the number of firms of approximately 9%, which is exactly the value in the
GK data. After that period, though the rate of growth of output is very
small (1% per year), prices decrease at a fairly fast rate (5%). This implies a
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very low elasticity of demand (0.2) and consequently a sharp decrease in the
number of firms (leaving aside heterogeneity , an annual decrease of 4%). As

a consequence, the model predicts that the number of firms converges to zero,

which is clearly not supported by the GK data.

4.3. Technological Change and Cost Reducing Invest-
ments

In the model discussed above, all cost reduction is exogenous to the firm. This
may reflect an important component of technological change, particularly in
the first stages of development of an industry, but leaves aside firm specific
investments. In this section we consider the situation in which firms may, at
any point in time, invest in improvements to the existing technology. Those
firms that are successful in making an improvement obtain a cost advantage.

In order to explain the patterns of industry evolution obtained from the
case studies, Gort and Klepper suggest the following hypothesis: For the first
part of an industry’s evolution, most innovations are accessible by all firms.and
entrants, while at a later stage the innovations tend to be more proprietary
to the firms. The initial stage would then induce an expansion in the number
of firms. In contrast, in the later stage those firms that are successful in their
investments obtain a cost advantage, crowding out the unsuccessful ones as
the number of firms decreases. While there is truly something compelling
about this story and it fits stages II and IV, it leaves unexplained the causes
of the shift in the innovation process.

The model discussed here provides a slightly different story. At all times,
firms have available the possibility of engaging in cost reducing investments.
However, these cost reducing investments are specific to the technology pro-
cess at use. If new and superior technologies are expected to arrive sood, it
may not be worth for a firm to incur these costs as the improvements are likely
to become obsolete. In consequence, investment behavior is affected by the
expectations of future technical advance. Technological change is high in the
initial years but becomes less likely thereafter. As firms’ assessed probabili-
ties of major future changes decrease, investment in proprietary cost reduction
will increase. At this point, Gort and Klepper’s story continues in place.”

7The idea of random sucess in developing a cost advantage was used by Jovanovic and
MacDonald (1992) as a mechanism to generate the shakeout. Our model has basically the
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We now turn to the description of the model. For convenience, we consider
here a continuous time model. The cost of producing output flow z is given
by a cost function ¢(£), where s € {6,1} is a firm specific cost component
and § > 1; v € {71,72,...} is a technology parameter common to all firms.
The function c¢ is strictly increasing and strictly convex. Firms pay a fixed
cost per period c;. For simplicity we assume that there are no costs of entry
and all potential entrants are identical.

When a new technology v; arrives, all firms -and potential entrants- have
free access to this technology with no proprietary enhancements. Conse-
quently, if a firm decides to use this new technology, its cost of production
will be given by c(;"’;). Alternatively, if such firm had developed an improve-
ment to the previous technology and decides not to use the new technology,
its cost of production will be given by ¢ (hf-: ) . For simplicity we assume that
6v;-1 < 7;, i.e. technological change is sufficiently large so that even a firm
that has developed an enhancement to the previous technology will decide to

switch.

In any period, firms can invest in.enhancements specific to the current
technology. The probability that an enhancement is obtained depends on
the level of investment. More precisely, enhancements have Poisson arrivals,
with arrival rate a(z), where z is the firm'’s investment flow. We assume «
is strictly increasing and strictly concave. Note that since all cost reducing
investments are specific to a technology, firms will be reluctant to invest unless
the probability of a change in technology is perceived to be low.

The technology level v evolves according to a Poisson process with ar-
rival rates A > 0.% However, there is also an independent event, which causes
technological change to cease forever after. The arrival time for this event is
exponentially distributed with constant hazard rate p. We will say that this
event leads to the no change regime. Firms only observe whether a new tech-
nology has-arrived or not and use bayes rule to update their prior probability
of being at the no change regime. '

This distinction between change and no change regimes, albeit arbitrary,

same mechanism, with two differences: i) firms can choose the level of investment in cost
reduction, while in Jovanovic and MacDonald it is fixed. Higher investment results in a
higher likelihood of obtaining the cost advantage; ii) The level of investment -and thus the
rate of cost reduction- is affected by expectations of technological change (and therefore
potential obsolescence of investments), which is absent in their model.

8Consequently, times of arrival have an exponential distribution with parameter A.
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tries to capture a common characteristic observed in the life cycle of new
products or processes. In the early stages, industries go through rapid changes
both in production technologies and in product standards. But over time, the
industry settles down while products and processes tend to become more
standardized. In our model the product is homogeneous, so the industry
evolution is governed by the process of cost reduction.

The demand for the industry’s output is given by the inverse demand
function p(Q.). To isolate the features that are specific to this story from those
considered in the previous section, we assume that the demand function has
constant elasticity, so p(Q:) = Q; " where 0 < 1.

The equilibrium implies a stochastic process for prices, output and the
number of firms in the industry. As in the previous section, every time a
new technology arrives price will drop so that p;v; = pj_;v;-1, where Pi
denotes the price in the period where technology v; appears. Because entry
cost is zero, once a new technology arrives incumbents lose any advantage
they may have previously acquired . When this occurs, the value of a firm
will be zero.? This simplifies the analysis considerably, by breaking the link
between periods with different technology levels. When a technological change
arrives it is as if a new industry supersedes the existing one. To derive the
equilibrium allocations we only need to consider as representative stage the
case v = 1. Because of the homogeneity built into the model, we may derive
the equilibrium allocations for other values of 4 as multiples of these.

We will now derive the equilibrium conditions. Let ¢ denote the time
elapsed since the last technological change. Let mp(t) denote the profits of
upgraded firms and = (t) the profits of those firms with no upgrade. The value
of an upgraded firm satisfies the following differential equation

rV(t) = mo(t) + v'(t) + A1) (0= V(). (36)

That is, the flow equivalent of the value of a firm consists of: i) the profit
flow my(t), ii) the change in the value of the firm, and iii) the capital loss that
results when a new technology arrives and the firm loses its acquired cost
advantage, where A(t) is the hazard rate associated to this event and is given

SWith a positive entry cost, the value of the firm would then be equal to this cost.
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(p + A) ,\ e"(P+/\)‘

b+ X e-(ot A (37)

At) =

This hazard rate is decreasing in t, reflecting the increasing likelihood of the
no change regime. Equation (36) can be more conveniently rewritten as

(r+ A1) V(t) = me(t) + V'(2). (38)

Consider now the situation of a firm with no improvements. Because the cost
of entry is zero, if entry is positive at ¢ the value of this firm will satisfy:

rW(t) ==(t) + max {a(z)V(t) - z} = 0. (39)

In particular, if the optimal choice is not to invest at all, then #(t) = 0.
Given V(t), equation (39) determines uniquely n(¢) and thus p(t) and
7e(t). Thus, equations (38) and (39) define an ordinary differential system
for V(t). Provided that the number of firms with no upgrades is positive
throughout the equilibrium path, p(t) — p(oo) and V(1) — V(o0), where
these values can be solved uniquely from these two equations. With this
boundary condition, using the above differential system a unique solution for
V(t) is obtained. ‘In the appendix we establish the following proposition.

Proposition 3 There ezists a unigue interior solution m(t), V(t) correspond-
ing to the system of differential equations (38) and (89). In this solution V(t)
is strictly increasing and p(t) decreasing. There is a time T > 0 such that
z(t) = 0 and m'(t) = 0 for all t < T and z'(t) > 0 afterwards. If T < oo,

then as t — oo, m(t) — 0.

Note that the number of firms is constant in periods [0,T]. This corre-
sponds to the situation described by Stage III in Gort and Klepper. In our
model, this is a waiting stage. Higher values of A(t) and r increase the du-
ration of this waiting stage. Note, however, that both the initial and final
number of firms (and thus the shakeout) are independent of p and A. The
final number of firms is affected by the investment technology. The higher
the chances of success are, the lower price will be in the limit and thus the
larger the number of firms will be. Conversely, lower chances of success will
imply a larger shakeout.

22



We now provide some numerical computations of the model. Assuming
that v /7,21 = 7 is constant, the expected rate of technological change is
A(y = 1). This corresponds to the rate of price decrease in stage II, which is
13%. Without further information on the Process for price change, we cannot
identify A and v. For illustratjve purposes, we choose \ € {0.5,1} with an
average duration of a technology of 2 and 1 years, respectively. The value for
7 is set accordingly. Demand elasticity for the region of shakeout was set to
0.9, the value corresponding to stage IV. § was set equal to 7, the highest
value that satisfies the assumptions. This is the value that maximizes the
shakeout.

Stage II ends when the no change regime starts. The average duration of
stage IT is approximately 10 years, so we set p = (.1. For the cost function we
use c(q) = £q¢%, setting c = 1 and choosing ¢, so that the initial equilibrium
price is equal to one. The probability function used is a(z) = In(1 + z).
This implies that z(t) = Vit)-1if V(t)@] and zero otherwise, and that
a(z(t)) = In(V(t)) when z(t) > 0.

Figures 4 and 5 give the results obtained. The solid line corresponds to
A = 0.5 (v = 1.26) and the dashed line to )\ = 1(y = 1.13). The initial
number of firms is normalized to 100. [nvestinent starts after 1.7 periods
in the case where A = 0.5 and after 2.6 periods in the case where A = 1.
After that point, the number of firms decreases monotonically when A = 0.5,
while in the other case it decreases monotonically but after an initial period
of increase. The limiting number of firms is approximately 88% of the number
at the peak. Figure 5 exhibits the fraction of upgraded firms, which follows a
logistic diffusion curve. ,

The annual rates of output growth implied by the model in the phase of
shakeout (stage IV) are just 1.7% and 0.7% for cases A = 0.5 and A = 1,
respectively. The corresponding rates of price decrease are only 1.9% and
0.8%, respectively. These low figures and the relatively small shakeout result
from the fact that average size of firms increases over time, but much less
than what is exhibited in the data. This suggests that a larger firm specific
cost reduction (higher 0) would be needed to account for this data.l®

1%Recall that we have limited the value of 8 so that 8 < 7 in order to simplify the
equilibrium analysis. .
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5 Conclusions.

" This paper considered economic models of industry evolution which can ex-
plain the empirical observations on firm shakeout. The theories developed
provide other testable implications and point to further evidence which may
be relevant to the study of industry evolution. In particular, the theories
based on demand growth and firm heterogeneity predict a larger shakeout for
industries where (1) the demand diffusion is faster, (2) selection is a more
important force and (3) the difference between the average size of incumbent
firms and entrants is larger.

The theories of market expansion based on cost reduction have focused on
the effect of technological change on the supply behavior of incumbent firms
and on demand elasticity. An important ingredient in producing the shakeout
here is the decrease in demand elasticity as the industry expands. Given that
the final size of a market is limited, this decrease in demand elasticity is very
plausible. As markets approach a point of saturation and demand becomes
very inelastic, cost reducing technologlca.l change results in the crowding out
of firms.

The evidence from Gort and Klepper suggests that cost reduction must
have been an important force in the development of these industries and that
the crowding out effect discussed above has probably played a crucial role.
Yet our analysis also suggests that there may be an important residual which
is unexplained by cost reduction alone, and that selection is a good candidate
hypothesis to consider.

Firm heterogeneity underlies the theory of selection. It thus seems im-
portant for the study of industry evolution to better understand the charac-
teristics of industries that lead to more or less heterogeneity and the process
by which this differentiation takes place. The model developed in section 4.3
emphasizes the role of randomness in the outcomes of private investments in
cost reduction and it jointly determines industry evolution and the invest-
ment behavior of firms. There are obviously other important sources of firm
differentiation, such as the outcome of R&D or market positioning leading
to product differentiation. Qur analysis suggests that these factors can be
important not only to understand the long run performance of an industry

but also for explaining its evolution.
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Fig. 1. The five stages of new préduct industries,
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Appendix

1 Derivation of Formula for Average Size.

Since g = p(1)s) + 4,(2)s, it follows that

9041~ = (51~ 52) (e (1) — pe(1)) = (81 — 83) —— (pe(2) — #e(1)), (40)

A+7

where the last equality follows by using pe41(1) = Mﬂ}%ﬂl From equation

(8) it follows that

#(2) = pe(1) = ¢ (10(2) = 1o(1))

where ¢ = :\‘—;3 Letting 7 = 75 (51— 82) it follows that

gea1(l — L) = 76 (4o(2) — o(1))

where L is the lag operator. Let z = (1 — 8)/~. Then

Li2o2'ge ~1_(#0(2) — po(1))
mz(l—Z)L(l_L) T 01_2¢ .

From here it follows that

Lieo Z“It-n — Y te0 Z‘Qt — (1 _ z) r (F0(2) — I‘O(l)) )

pPrade 1-2¢

But since
[« <] 00
Yo g =2zt (Z z'q — 90)
t=0 t=0

it follows that -

co2e o (Bo(2) - (1))
Y.zt 0 1—z¢

(41)

(42)

(43)

(44)

(45)

(46)

Replacing for z and 7 and using A +7n =1 — 0 equation (16) is obtained.
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