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1. Introduction.

The study of industry dynamics has been an area of interest to both theorists and
applied economists. Recent empirical studies indicate that a distinctive characteristic of
industry evolution is the high degree of heterogeneity encountered: high variance of growth
rates across firms, high dispersion in size and significant rates of turnover of firms.!
Several dynamic models have been recently developed to account for this heterogeneity (see
Jovanovic (1982), Lambson (1989), Ericson and Pakes (1989) and Hopenhayn (1989)). In
spite of the similarities in the approach followed by the authors —all are equilibrium dynamic

models— each of these models has its own specialized features and existence arguments.

The purpose of this paper is to provide a general theoretical framework for the study
of competitive industry dynamics. As shown below, this framework accomodates a fairly
large class of models, including those referenced above. A general set of assumptions are
provided under which equilibria exist and the price dynamics is uniquely determined. Asin
Lucas and Prescott (1971), the equilibrium allocations are the solutions to an optimization

problem, which under markovian assumptions is a dynamic program.

The theory presented depicts an industry composed by a large number of firms and
potential entrants. Production possibilities of firms in each period, are affected by both
aggregate and intrinsic sources of uncertainty. In any period, firms can exit the industry,
while potential entrants may choose to enter. After entry and exit decisions have taken
place, firms choose production plans for the period. These production plans affect their

current profits and the conditional distribution for their state in the following period. Under

iSee Dunne, Roberts and Samuelson (1987a,1987b), Evans(1987a,1987b) and Davis
and Haltiwanger (1989).



the equilibrium price process all these decisions are optimal. The framework allows for
aggregate and firm specific uncertainty, capital accumulation and the possibility of multi
product firms. The technology sets of firms are not required to be convex, so U—shaped

cost curves are admissible.

There are three distinctive features of the theory developed here: (i) Firms take the
(correct) price process as given; (i) there is a ‘darge number’ of firms (more precisely a
measure space of firms) which ensures the aggregate technology set is convex (though the
individual technology sets of firms may not be so) and that all the aggregate uncertainty
comes from the aggregate shocks; (iii) in any given period, all potential entrants are
assumed to be ex—ante identical (though after entry they become differentiated by the

realizations of the firm specific shocks).?

Of these, (i) and (ii) are more fundamental. For the finite dimensional case (e.g.
finite number of periods or aggregate shocks), Novshek and Sonnenschein (1978) show that
competitive industry equilibria where firms have infinitesimal size approximate Cournot
competition when economies of scale are small relative to the size of the market. Small
efficient scale also plays an important role in our setup. One may conjecture that the set of
competitive equilibria described here approximate the Markov perfect equilibria of the
corresponding dynamic game as economies of scale become small. But this is something we

do not know.

In fact, some degree of ‘ex—ante heterogeneity’ can be easily introduced, as
mentioned in section 2.



From a methodological point of view, this paper extends Lucas and Prescott (1972)
by allowing for heterogeneity, entry and exit and nonconvexities at the firm level. As in
Lucas and Prescott, we show that industry equilibrium allocations maximize net expected
discounted surplus and that allocations that maximize net expected discounted surplus and
their corresponding prices are industry equilibria. There is an important difference, since
there is no ‘representative firm’ in our framework, so the heterogeneity of the population of

firms needs to be explicitly considered.

Section 2 introduces the elements that define an industry and describes the set of
feasible allocations. Section 3 defines an industry equilibrium and lists the assumptions.
Section 4 establishes the existence of equilibria and the uniqueness. of equilibrium prices.
Furthermore it develops the dynamic program that solves for the equilibrium allocations.
Section 5 provides conditions under which the equilibrium is markov stationary. Section 6

studies the application of the theory to several models in the literature.



2. Definition of an Industry and Feasibility.

2.1. Industry

Before proceeding to a formal definition, we will (loosely) describe the basic elements
involved. The industry considered is composed of a ‘large’ number of firms and potential
entrants which at any point in time differ according to the value of an individual state,
denoted by si€S, where S is the state space of firms. This state may contain some exogenous
(e.g. firm specific shocks) and some endogenous (e.g. capital) elements. Together with the
realizations of an aggregate shock 6;, the firm’s specific state determines its production
possibilities Y(6,s:), the set of input—output vectors that are feasible for the firm. In each
period, the production plans of the incumbent ﬁrms; when aggregated, determine an
aggregate input output vector, yi€R® which is valued by the market according to a given
function p(6;,y:), where the jth component p;(6:,y:) gives the market price for good j=1,..R.
For example, y; could be a two element vector, the first one positive (output) and the second
one negative (input), and in this case py(f;,-) and pa(0:,+) are, respectively, the inverse
demand function for the output and the inverse supply function for the input, which, as

shown, may be affected by aggregate shocks. :

The individual state of an incumbent firm for the following period is a function of its
current state and input output choice, while possibly affected by the realizations of the
aggregate shocks (#t), with conditional distribution given by P(ds,,,6",5t,yt)- Thus, before
production decisions are made the aggregate shock (f:) and the firm specific state (st)
determine the production possibilities of the firm in the current period and all relevant

information for its future. Since it is the state of the firm and not its ‘identity’ which



provides the relevant information3, the situation of the industry at any point in time will be
described by the distribution of firms across different states and, as a measure of the size of
the industry (relative to the rest of the economy), the mass of firms in it. The industry
starts with a measure po of firms, where uo(S) denotes the total mass of firms and po(A)

denotes the mass of firms with states so€A, where A is a measurable subset of S.

The possibility of entry (and exit) of firms to the industry, provides an extensive
margin for changes in the aggregate input output vector of the industry. All potential
entrants are assumed to be identical ex—ante, though after entry their states may differ. It
is assumed that initial states of firms are independently drawn from a common distribution.
This distribution may be affected by external and possibly time dependent factors (e-g.
technological progress). This is modeled by making the initial distribution ¥(ds|6:) a
function of the exogenous process {6;} faced by the industry. We are now ready for the

formal definition.

An Industry is defined by the following set of elements:

{p(01,y), B, Y(8:,5), (S,8), P(ds’| 6,5,y), v(ds | 8s), po(ds)} '

where:
i. 0,€0 is a stochastic process common to all firms. 6t denotes the history of
the process up to time t and ¥(dd,,,| &) its conditional distribution. L
ii. p:OxY-Rk is an allocation pricing function, where YciRk: ~ -
iii. Pe[0,1) is a discount factor. '

M In the limit the individual agent has so to speak lost his identity and it therefore seems
artiﬁjcial to keep the individualistic description of an economy in the limit" (Hildenbrand,
1975).



iv. Y(0,,5)CY is the technology correspondence which gives the technology set
of a firm with own state ‘s’ when the aggregate state is 6.

V. S is the space of states of the firms.

vi. P(ds’| 8,5,y) is the transition function for firm’s states.

vii. 1(ds| 6;) gives the first period distribution of states for entrants.

viii. pio(ds) gives the initial distribution over states of firms in the industry.

As mentioned above, there are two possible sources of uncertainty: the aggregate
process {0;} and the intrinsic uncertainty faced by each firm. Note that the aggregate
stochastic process given in i. allows for non—stationarities, which can be useful to analyze the

industry dynamics along its ‘life cycle’.

Demand and supply conditions are given in . Following Arrow—Debreu conventions,
inputs are denoted by negative numbers. Thus p(6;,y) gives the price vector of the goods
produced and inputs used by the industry when the aggregate state is 0, and the aggregate

input output vector y.

Production possibilities for each firm are indexed by the aggregate state and by an
individual state.4 As mentioned above, the process for the state of the firms is given by an
initial distribution {ds| ;) from which the first period states for entrants are independently
drawn and a transition function P(ds’;,s,y), by which the states of firms are independently
adjusted. Note that §; is an argument in the process followed by individual firms. So, for
example, if there is an ‘outside’ innovation that makes all potential firms more productive,
this could be captured in the above description by a change in the initial distribution faced

by firms, e.g. a ‘better’ initial draw.

4The state space will typically be restricted to be a subset of a metric space. Hence the state
of the firm could be a vector including exogenous components and capital stocks, a function,
a measure or a combination of these.



The generality in the description of firms’ states provides scope for many interesting
special cases. In particular, ‘s’ could be a vector with some purely stochastic components
(that cannot be changed by the firm) while some components (e.g. capital, human capital)
may be adjusted at a cost. It is also apparent that technologies with learning by doing —at
the firm level— or ‘time to build’ are easily accommodated in this structure. For example, s
could contain a vector of investments in progress, while some of the elements in y; can be
investment related inputs. The technology specified allows for ‘fixed costs’; in that case
0¢Y(6:,s). Entry costs can also be included by an appropriate restriction of the technology

set for entrants, as detailed in section 3.2 .

A special case, widely used in the literature, is that of an industry with a
homogeneous output, with price given by an aggregate demand function and production
technology given by a cost function c(q;0,s). By/déﬁr;;gwf@js)zwcgc%gﬁ,snjhls
problem translates into the ~wwrg/is worth emphasizing that Mproach we

. ol

follow has, as an advantage, that it generates explicit input factor demands.5

e et e

2.2 Feasibility. :

As mentioned above, the distribution of firms’ states and the ‘size’ of the industry,
summarized in the measure y, together with the aggregate process ¢t fully describe the state
of the industry in period t. Hence input output choices of firms could be described by a

function y(@t,s;) with the obvious constraint y(st)eY(f%,s:). However, this would restrict

5For an application of a model within this framework to the study of the effect of adjusment
costs on labor turnover see Hopenhayn and Rogerson.
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all firms with the same state to the same input output choice.6 To allow ‘different firms’ to \'\.‘
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make ‘different choices’, instead of attaching to each state a unique input output vector, a \

distribution 7{dy;s) over feasible input output vectors can be specified. This distribution
gives the fraction of firms in that state producing the various input output combinations.

An equivalent formulation which is analytically more convenient is to ‘combine’ the
information on the input output choice of incumbent firms with the distribution of their
respective states. This can be represented by a joint distribution over states and input
output vectors (si,yt) of firms, i.e. a measure % ¢ On SxY. This measure satisfies
#(dsy,dyt)= f w(dy;s);@, where p; gives the distribution of incumbent firms’ states and
m(ds";s) the conditional distribution of input output choices mentioned above. As noted, %

must be consistent with the distribution of incumbent firms’ states put, 0 its restriction to S

(first marginal) must coincide with the measure p;. It must also specify allocations that are

feasible for each state; more formally 4 must have support on the graph of the

correspondence Y(+), i.e. on pairs (st,yt) such that yieY (6t 5¢)-

The state of the industry is also affected by entry and exit decisions. Entry and exit
occur at the beginning of each period, i.e. before production decisions are made. Since all
entrants are ex—ante identical, the mass of entrants denoted by M; summarizes entry
decisions. Given that the distribution from which entrants independently draw their initial
state is given by »(ds|6t), the contribution of entry in period t to the total distribution of
firms is Myv(ds|6t).

Exit occurs before firms observe there new state sy but in knowledge of 6;. At that

point firms are distinguished not only by their state in the previous period s¢-y but also by

6This is a nontrivial restriction if the set of states were finite. In that case, if technology sets
of firms are not convex, the aggregate production set will be nonconvex. In the existence
proofs below aggregate convexity plays an important role.

!
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¥i-1, their input output choice for that period; this is important since both elements affect
the conditional distribution of the firm’s state for the following period. Thus the firms that
exit will be distinguished by (st,yt) pairs with a measure of exits ¢; on SxY that satisfies the

condition ¢i< g4 , Or (loosely) exit of firms of type (st,ys) cannot exceed the total available.

The allocations described above may of course depend on realizations of the process
{6}. Thus the proper elements for the description of a feasible allocation are stochastic

4\%"\/»

v @ }processes. The common information at time t, denoted by oy, is the minimal o—algebra
.
59"

generated by the process {6t} in the usual manner.

. o0
A feasible allocation is - a tuple of stochastic processes {# 1,Mj,¢ ’{,u{}t=o
o, (
(universally) measurable on{lx{@t}, yhere MzeR,, #1 is a measure on SxY, e} is a measure on

SxY, and pf is a measure on S, that satisfy the following conditions:

F1. 4 has first marginal yz+M3v and support on the graph of Y(8t,-).
F2. K< il ot
F3. {,w;}ho is consistent with {c;,;;g,M;}“o , e

i(ds') = [ P(ds"] 0,03) 1t — <il(dy,ds) and i = pio

We will use {y:} to denote the input output process that corresponds to a feasible
allocation, which is derived from {4:} by the equation y; = / y;;(ds,dy). It is not hard to

check that the set of feasible allocations is convex.
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3. I‘ndustry Equilibrium.
3.1. Definition of Industry Equilibrium.

In any period, incumbent firms have two choices to make: whether to remain or leave
the industry and in case they remain the choice of input output vector for the period. In
making these decisions we assume firms have rational expectations and take as given the
current prices and the distribution of future prices. Equilibrium prices for a given period
depend on the realizations of the aggregate shock for that period and all previous ones.
Potential entrants have the same information that incumbent firms have, except that their
own states are not known prior to entry, though the distribution (ds;8;) for their initial

draw of s; is anticipated. We will now prdceed to the formal definitions.

A price process p={p:} is a stochastic process on ot that takes values in R}. This
process can be identified with a sequence of borel measurable functions from py:O-RE.
Given a price process {p;} the value of a firm when the aggregate state is @t and its own

state sy, is given by

T
(3.1) vt(0t,st) = sup Et{ Eoﬂ' pthym| 0",8(,}
T,y °

where both, the stopping time T and y.€Y(8,s:), are processes that are universally
measurable on {(©txS)}. Note that v(#,s;) is the value of a firm in period t after observing

the realization of its state and that the price process is implicit in this definition.”?

The requirement that the above be well defined is included in the definition of equilibrium.

10



A policy (1,y) is profit maximizing for a firm with initial state s when the aggregate
state is 6t if it attains (3.1). Note that policies are stationary in the sense that T and y do

not depend on the whole history of states of the firm but only on its contemporaneous value.

This restriction seems warranted since the process for the firm’s ‘idiosyncratic’ shock is
stationary and technology sets depend only on its current state. However, note that since

the time variable ¢’ may be included in 6;, a policy need not be time invariant.

An allocation { ;;g,M’g,c’{,ug}:_o together with a price process {p:} is an industry

equilibrium for industry J if:

(i) The allocation is feasible from g

(ii) For all s in the support of g and 8¢, (3.1) is well defined and #(- | 6) has
support on pairs (s,y) such that y is pa.rt of a profit maximizing policy
under (6t,3)

(iii) a) For all firms in the support of e}, exit at t is part of a profit maximizing
policy.

b) For all firms in the support of it remaining in the industry at time
t is part of a profit maximizing policy. ,

(iv) [v(0t,5)v(ds| 0+)<0 and if the inequality is strict M3z (6t)=0.

(v) p; = p(ft,y:), where y, is as defined in F1.

Conditions (i) and (iii) state that firms maximize expected discounted profits, so
their decisions are consistent with the objective (3.1); (iv) is the standard ‘zero profit’
condition for entrants: expected discounted profits of entrants cannot be strictly positive,
and can only be negative when there is no entry; (v) is the standard market clearing

condition.

11



3.2 Examples.

To better motivate the definitions we provide two examples. A detailed discussion of

these and others is provided in section 6.

Lucas and Prescott (1971) analyze a dynamic stochastic competitive equilibrium for
an industry with the following features: All firms have the same constant returns to scale
technology with output constrained by capacity, i.e. if ky is the firm’s capacity at time t and
qs its output, then q¢<ki. The cost of increasing capacity in one period from k, to ki, is
given by g(k,k..,) = kh(k,,/k;), where h is assumed convex, nonnegative and strictly
increasing. Demand is given by a continuous demand function D(6:,q;) decreasing in g,

where 6, follows a Markov process that takes values in R.

Since there are no other factors that affect firms’ production possibilities, the state of
the firm is given by its stock of capital k. Entry is ruled out and since 0€Y(6 k) for all
(8,k:), no exit of firms occur, so all changes in aggregate output and capital stocks are the
result of changes in these variables by incumbent firms only. To model this in our
framework, let i,=g(k,k,,,). Since g is strictly increasing in ki, ,, for values of k, and i the

value of k,,, is determined. So let P({k,, }k,i,)=1if i;=g(k,k,.,) and zero otherwise.

The assumption of constant returns to scale places no restriction on the number of
firms operating in the industry. Hence, without loss of generality we can consider the case
where there is a continuum of firms operating in the industry at time zero with an initial

distribution po of capital stocks®. Let y.=(qt,it) and p(6:,y)=(D(0:,q¢),1)- With this

8This distribution can have point masses at the capital stocks that would correspond

12



specification, the model considered by Lucas and Prescott can be accommodated to the

structure presented in this paper.

Jovanovic (1982) develops a model of an industry where each firm’s variable cost
function depends on the realization of a shock 7 drawn each period from a normal
distribution with known variance but unknown mean §. This mean is firm specific and time
invariant. Entrants’ value of 0 are normally distributed according to a known distribution
with mean 7. Based on the realization of the cost parameter 7, firms update their prior
beliefs, which are summarized by a prior mean and precision. More precisely, let n be the

age of a firm and 4, its prior mean; so 0n=_)5lm and 0n,l=n—g_’*‘_—'1*'—nﬂ.
is=

Let the state of the firm be sn=(7n,0n,n) and the transition function defined by using
the above law of motion for §, and the normal prior distribution for 7,,,, imposing that with
probability one the last component will be n+1. The initial distribution is defined in an

analogous way but taking @ as initial prior mean.

In addition to the variable costs, firms pay a constant fixed cost per period and there
is a sunk entry cost for new entrants. To include the cost of entry, we proceed in the
following way. Let s be the state of an incumbent firm and s. be identical to s except for a
component that indicates the firm is an entrant. Then Y(0;,8¢)=Y(0,5)—¢, where

¢=(0,0,...,0k-1,c) and px(y)=1for all y.

There is no capital in the model so firms make no investment decisions. Prices each
period are determined competitively, where the aggregate demand function for each period is

known and follows a deterministic process. The timing of entry, production and exit

industry with finitely many firms.

13



decisions is similar to the one described in the introduction.? The equilibrium concept

employed by Jovanovic is analogous to the one given in this section.

With the above definition of the state vector, mapping the model into the general

framework presented is immediate.

4. Equilibrium Existence and a Characterization.

This section describes the main approach followed in the existence proofs and
provides conditions under which an equilibrium exists and the equilibrium prices are unique.
We first discuss some distinctive features of the theory developed that motivate some of the
assumptions we make (section 4.1). The main results are then presented in 4.2, followed
by a discussion of an algorithm that can be used to compute the equilibria based on the

methods used in the proofs (4.3). The more technical matters are left to the appendix.

4.1 Assumptions. 1

The strategy of the proof is to show that the equilibrium allocations maximize the
expected discounted sum of net consumer surplus on the set of feasible allocations (the
‘planning problem’) and, conversely, any allocation that solves this planning problem is an

industry equilibrium —for the price process generated by the allocation. This is also the

9There is a slight difference since in Jovanovic(82) firms make their output decision prior to
observing their cost parameter. So essentially firms precomit themselves to an output level;
this can be handled by making one of the components of the state of the firm s; be the
‘output decision for the current period’ and restricting the technology correspondence in the
obvious way.

14



approach followed in Lucas and Prescott, 1972. Our environment is more complex in several

respects, which are now discussed.

The first difference arises from the heterogeneity of firms and lack thereof of a
‘representative’ firm, as occurs in their framework. As a consequence, there is no simple
summary statistic for the state of the system, as given in Lucas and Prescott by the
aggregate capital stock, so the whole distribution of firms’ states and its evolution must be
taken into consideration. This not only complicates proving the existence of a solution to
the programming problem, but introduces an additional complication in establishing the
duality between industry equilibria and solutions to that program: instead of one
representative firm maximizing profits, we have a measure space of them. However, these
firms make decisions independently faced with a common stochastic process for prices and
there are no externalities. It is well known that under these conditions and with a finite
number of firms, profit maximizing by each firm separately gives the same aggregate
allocations as the ones obtained by maximizing their joint profits. To establish this in our

framework is not a trivial exercise.

Firms have been “forced’ (by our construct) to be small (nonatomjc) relative to the
size of the industry. This is obviously inconsistent with the existence of increasing returns
beyond a limited scale. Moreover, having admitted the possibility of heterogeneity, it is
apparent that if some firms in the industry are ‘better’ than others, production may tend to
concentrate on the better ones. And unless some assumptions are made to limit the efficient
scale and/or the relative advantage of firms, there may be no solution (and equilibrium) to

our problem.1® The restriction of the optimal size of firms to a ‘small efficient scale’ is

10Suppose the initial distribution is given by a density of firms over an interval that reflects
their unit costs of production and that the state of firms does not change through time. The
optimal production plan would entail assigning all production to the firm with the lowest

15



precisely the purpose of assumptions (SES) and (SES’) below. The former imposes an upper
limit to capacity, while the latter introduces asymptotic diseconomies of scale with respect
to an essential input, which has strictly positive price. These assumptions are used

alternatively in the existence proof (Proposition 4).

In contrast, if firms production technologies exhibit decreasing returns to scale and
there are no costs of entry to the industry, the opposite problem arises: the mass of firms in
the industry could become unbounded. This obviously translates into another non existence
problem. There are two natural ways to avoid this: to rule out decreasing returns ‘at zero’,
e.g. with a fixed cost, or to include setup costs for entrants. Our assumption (T3), which is
consistent with both interpretations, heuristically states that "large entry requires large

inputs".

One of the requirements in the definition of equilibrium is that (3.1) be well defined.
We have already limited the efficient scale of firms, so provided that prices are adequately
bounded, (3.1) will be well defined. Assumption (B3), which essentially says that Btpy is

bounded by an integrable function, provides this bound.

We now describe the ¢joint profit maximization’ problem mentioned above. Consider

a price process {p:} and let {y.} be a feasible input output process such that EoLftpy: is

unit cost. But this firm has measure zero! It is easy to see that there will be no solution to
the optimal program. Technically, this appears as a discontinuity of the aggregate input
output vector with respect to the input output allocation ¥

16



well defined.tt If EoEftpiy: is finite, we will say that the input ouput process has bounded

value. The value maximization problem faced by the ‘aggregate’ firm can be stated as:

(4.1) max Eo ¥ ftpy,
{ y t} t=0
on the set of feasible allocations with bounded value.

We define a feasible allocation {y’g,M’g,e;,pg}T_o together with a price process {p}} as
a single firm equilibrium if it satisfies (v) of the definition of industry equilibria and is 2
solution to the above problem. For this problem to be well defined, some assumptions that

provide a bound on revenues will be made later.

To define the optimal program, for yeY let

(42)  S(by) = 2 f T (0x)dx - 2 f "pi(0,x)dx.
{ily;20} ° {jly;<0} 73

This objective has implicit the fact that the allocation pricing function has the form
p(¥) = [Pi(y1),P2(¥2)-1»Px(yx)], s0 that there are no cross—price effects, which is assumption
(D1). This has been done to guarantee that the gradient vector of S(0,y) is p(8,y) and that,
provided each price is (weakly) decreasing in the corresponding aggregate, S(-) is concave in
y. These are the key features needed to establish the duality between equilibria and
solutions to the optimal program, so any alternative set of assumptions that gives a function

S(0,-) with those features can be equally used. The planning problem is defined by:

t1In all our definitions we consider the integral with respect to the product of the measure over
sample paths and a counting measure on the positive integers. Thus E.LStpiy: is to be
taken as the integral of the function ftp.y, with respect to that measure. Note however that
as far as this integral exists, by Fubini’s theorem the iterated integrals do too.

17



(43)  max Eotgo BtS(6:,y+1)
over the set of feasible allocations, where y;= f y 4t(ds,dy) and S(-) is defined by (4.2).

Heuristically, this is the problem faced by a planner that maximizes the expected
discounted surplus generated by the industry subject to the techmological constraints, by
opening, operating and closing ‘plants’ every period. To assure this problem is well deﬁned,‘
we will assume that S(-) is bounded above (B1). Assumptions (SES) or (SES’) limit the
optimal size of firms. The ‘size of the industry’ needs to be limited too, for even if S(-) is
bounded it can be strictly increasing in the input output vector y. Assumption (B2)

provides this limit; it loosely states that ‘large’ input output vectors are undesirable.

We now list the main assumptions used in our proofs.

Assumptions.

(S1) Sisa compaLct metric space.!? ,

(S2) © is a borel subset of a metric space.

(S3) P(ds’,-) is a weak* continuous function from ©xSxY to HAS), the
probability measures on S.

12The compactness of S is not necessarily a significant restriction: for the endogenous
components (e.g. capital) bounds can often be established, as indicated by some of the
examples in section 6. For non compact exogenous processes it is sometimes possible to

resort to a compactification argument, as done in example b) of Section 6.

18



(D1) p(6t,y)={p;(0t,y;)}* 1 (independent pricing functions).
J =

(D2) p;j is measurable in ©t®L, where L corresponds to the lebesgue sets and
p(#t,-) is continuous for almost all 6.

(D3) p(ét,-) is (weakly) decreasing.

This is well defined by assumption (D1), (D2) and (B3) below. Let Jdenote the
cone generated by Y (i.e. the set of all points in R of the form Ay where yeY and
A0).

(B1) S(-) is bounded above.
(B2) For any sequence y"€ #such that ||y"||~e and t€©*, limsup S(6t,yr)=—w.

(B3) p(-) is bounded by a f—integrable function.!3
(B3)  p(-) is uniformly bounded above.

(T1) Y(-) has closed graph in (xSxY.
(T2) For any initial measure p, there exists a feasible allocation.
(T3) M;-o implies "yt"-'m or Mt$Mt<m.

(SES) Y is bounded above. (recall Y(#t,s)cY

(SES’) (a) For every e>0, yeY and ||y||2c imply %l-}!,'fi; ¢, where ¢ only depends

on ¢ and y;<0, where j is fixed.
(b)  The price of input j is strictly positive, i.e. p;(6¢)2p;>0.

13The function X is f—integrable if ftX;, viewed as a function of (t,0) is integrable with
I¢spect to the product of measure A and a counting measure on the positive integers.
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4.2. Existence and Uniqueness of Equilibrium.

The proof of existence is done in the following steps: First, it is established that the
allocations that maximize the expected discounted sum of net consumer surplus on the set of
feasible allocations (the ‘planning problem’) provide a single firm equilibrium —for the price
process generated by these allocations— and that any single firm equilibrium is also a
solution to the planning problem. These results are summarized in Propositions 1 and 2,
which are proved using very simple variational arguments. Secondly, it is shown that for
any price process, feasible allocations that solve (4.1) satisfy conditions (i)—(iv) of the
definition of Industry Equilibrium, and conversely, any allocations that satisfy (i)—(iv) are a
solution to (4.1). These results are summarized in Proposition 3. Finally, a solution to the
planning problem (4.2), and thus the existence of equilibria, is established in Proposition 4.
These tesults are summarized in the main existence result, Theorem 1. Since not all
assumptions are necessary for each step, we will follow the convention of including at the
beginning of each proposition and within brackets, the assumptions used So, for example,
(S) without affixes represents assumptions (S1)—(S4) and similar conventions are used for
the rest of the assumptions.

Proposition 1. (S)(D)(B1) Suppose {p}, ;;’g,M;,c’;,u{}lo is a single firm equilibrium. Then

{y;,Mg,eg,ug}:’_o is a solution to the optimal program.

Proof. Let {y.} be the aggregate production plan corresponding to {#:}. By Lemma 1,
E Z0S(0t,y:) exists and exceeds —w. Suppose by way of contradiction that there exists
another feasible input output process {y;} such that E,IAtS(0t,y1)—EoZAS(0,ye)>0. Let
{y§} be the process defined by y}=06y;+(1—6)y,. For notational convenience let pi=p(ft,ys)
and denote by S,, S; and 5§ the function S evaluated at ¢t and, respectively, at y,, y} and y}.
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Since the set of feasible allocations is convex, {y}} is feasible for all 6e[0,1]. By Lemma 2,
(S§-S,)/ 8 is decreasing in § and by Lemma 1 it increases to p(6,y,)(y}—y,) as 610. Since for
6€(0,1], (S§-S,)/6 is bounded below by S;—S,, which is an integrable function, so using the

monotone convergence theorem

0 < EoEﬁ‘Si—EoEﬂtSt
< %11!1 [Eozﬂtsg—EoEﬂtSd/ﬁ
0

= %1151 EoE[ﬁt(SQ—St)/ﬂ

= EZ6p,(yi-¥,)]
= Eozﬂtptyz;_EOEﬂtptyt

a contradiction to the fact that yy is a profit maximizing process for {p¢} 0.

Remark. A sufficient assumption to justify the exchange of limits and interchange in the

order of integration is that S(-) be bounded above by a f—integrable function.

Proposition 2. (S)(D)(B1,B3) Suppose { ¥ oMty e {,u’g}:’ . is a solution to the optimal
= ]
program. Then this allocation together with prices p=p(0t,yt), where y,= f Yy (ds,dy), is a

single firm equilibrium.

Proof. Consider first an alternative bounded!4 input output process {y}}; note that by (B3)

EoZp,y; is finite and E,EftS{>—w and define y} as in the proof of the previous Proposition.

14We will say that the process {y.} is bounded if sup llye(0e(w))]| <.
ot ¢
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By an argument similar to the one used in the previous proof,
Oz[EOEﬁtSQ—EoEﬂtSt]/&EoEﬁtpt(y;—yt) as 610.

Since E Zfp,y;>—w, the above implies EoIftp,yi<EcLftpy, and by Lemma 1,
EoZAtp,y <EoLAtSi<w so {yt} has bounded value.

Consider now an arbitrary feasible aggregate input output process {y:} with bounded
value." For each path {6;} let To=sup{t|[lycll<n}. Let y? = y; for <7y and zero otherwise.
Note that this plan is feasible since all firms can exit after observing gt. Since {y}} has finite

value, EoXftpry? is finite. Let An={{6:},t!mn({0:})<t}. Since Anlg,

EoSftpey} = EoZAtpey, — EeTAX, Piy, = EoZA'Pey,
which proves the claim 0.

The following proposition states the equivalence between single firm equilibria and

industry equilibria. :

Proposition 3. (S)(D)(B1-B3’)(T)(SES or SES’) The set of SFE and Industry equilibrium
coincide.

Proof. See appendix.
Remark. Assumption (B3’) allows us to use some results in negative dynamic programming.

It is an open question whether the same can be done under (B3), which we conjecture is

true.
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Proposition 4. If assumptions (S)(D)(B1-B3)(T) and either (SES) or (SES’) are satisfied,
there exists a solution to the optimal program.

Proof. See appendix.
We now state one of the main results, a direct consequence of Propositions 1 thru 4

Theorem 1. If assumptions (S)(D)(B1-B3')(T) and either (SES) or (SES’) are satisfied,

there exists an Industry equilibrium.

Having established the existence of equilibria we now turn to the question of

uniqueness. The following Theorem states (loosely) that equilibrium prices are unique.

Theorem 2. Let p, and p; be two equilibrium price processes. Then p,=p} (almost

everywhere).

Proof. If for some 6, y and y’ are two input output vectors and pj(ét,y)#p;j(é.y’), then for
any Ae(0,1), S(84,y*)>AS(6t,y)+(1-A)S(6%y’), where yP=Ay+(1=A)y’. In words, S(é,-) is
strictly concave over aggregate input output vectors with different prices. This fact,
together with the convexity of the set of feasible allocations implies that any two distinct

equilibrium allocations must (almost everywhere) have the same prices 0.

Corollary. If for some j, pj(ft,) is strictly decreasing for all 6t, then for all equilibrium

allocations the process for yj; coincides o.
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It is worth emphasizing that in many cases the above two results can be used to
establish uniqueness of the equilibrium. The following case, studied extensively in
Hopenhayn (1989), indicates this connection. Suppose that S is equal to an interval [s,59] in
the real line, that for any price vector p the profits of 2 firm x(s’,p)>n(s,p) whenever §’>5
and that for any price process the input output choices of firms are uniquely determined.
Note that this implies that all firms with state below certain threshold s*(6t) exit, while all
firms above that threshold remain in the industry. For simplicity assume that the
distribution function for firm’s states is continuous.!5 Let one of the goods be an output
good, and assume that in any equilibrium its price and the quantity produced by each firm
are strictly positive. Suppose the price of this good is strictly decreasing in the aggregate
quantity demanded. Under these conditions, by the above corollary the total output process
for this good is uniquely determined. We now show that given a continuous initial
distribution, the equilibrium is unique. To see this, note that since total output is strictly
increasing in the number of entrants, entry for the first period is uniquely determined. With
the above exit rule and a continuous distribution of firms’ states, given g1 the exit of firms is
unambiguously determined. But this implies that the initial distribution for the following
period, namely p;, is also uniquely determined. Repeating the argument, given (01,02) M3 is

determined. This argument, applied recursively, implies there is a unique equilibrium.

4.3. Dynamic Program: A Decomposition.

We have shown that the equilibrium allocations correspond to solutions to a dynamic
programming problem. For the special case where the transition function is independent of

y, this problem can be decomposed into a ‘static’ and a ‘dynamic’ part. The former

15This will be the case if for all (6,,s,y) the conditional distribution F(ds’|6,,s,y) and the initial
distribution 1(ds’} ft) are continuous.
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corresponds to the optimal input output choice, which only depends on the distribution of
firms active in a given period and the aggregate shock. The ‘dynamic’ part corresponds to
the choices of mass of entrants and distribution of exits. Let R(0,12) denote the maximum
surplus attainable in the current period when the distribution (after entry) is Ji. The

functional equation simplifies to:

V(0t,p) = I\n/}a‘x R(6s l"+MVt)+ﬂEtV(m”’u,)
e

subject to: (i) M20
(ii) 0<ep
(iii) p’ (ds*)=[P( ds’| 0t,s)[u(ds)+Mu(ds| 6+)—e(ds)]

This is a dynamic programming problem with a nonlinear objective but linear
constraints, which from the computational point of view, makes the evaluation of V(#6t,u) for
each iteration on the above bellman equation a relatively simple task. For illustrative

purposes, we will comment on a specific application.

The author has used this algorithm to study the adjustment of an industry to a
demand change, the evolution of an industry faced with a (deterministic) fiemand cycle and
the effect of exogenous technological change on industry dynamics. The model used has a
discrete aggregate process {6t} and a finite number of idiosyncratic states for the firms
(sy,..-,5n)- To simplify the exposition, however, we only include the firm specific process.
The initial distribution is given by an nx1 density vector v and the transition function —only
dependent on the current state— is given by an nxn matrix P, where element pjj denotes the
probability of going from state s; to states sj. Since the choice of output does not affect the
transition of firms, the planning problem can be decomposed in the manner described above.

The production function is given by f(s,n)=s[yin—7.n?, where n is the only input, the
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inverse demand function linear (with constant A and slope b) and the price of the input
fixed at 1. The surplus function is therefore S(Q,N) = AQ — %Q2 — N. All firms in the
industry incur in fixed cost c¢f and entrants have an entry cost ce. If the distribution of firms
available for production in a period is given by the vector u, where element uj indicates the

mass of firms with state s;, the problem faced by the planner at the production stage is:

R() = max AQ—2Q?-N- orZ
nj

where Q=2-1-1-j8j[’)'1nj—72n?] and N=Zj)ﬁjnj.
j
The recursive problem is given by:

V(u) = max R(u+Mv) — cM + AV(P[u+Mv—e])
,€

subject to: M0 and 0<ej<uj+Mvj,

where e=(ey,...,&;) is the vector of exits.

The algorithm can be implemented by solving this recursive problem or truncations

of the corresponding sequential problem.
5. The Stationary Model

An interesting question is under what conditions an equilibrium process has a

stationary distribution. This is particularly useful for statistical analysis, e.g. to obtain
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consistent estimates of parameters of the equilibrium process from the sample averages.!6
This is related to a more general question which is under what conditions the equilibrium
process varies continuously with initial conditions or with parameters of the model. The
following section gives assumptions under which the optimal policy rule is an upper
hemicontinuous function of the state. This is used to establish that there exists a stationary
distribution for the equilibrium process, provided the equilibrium satisfies a boundedness

condition.!” We now present the additional assumptions.

(M1)  The process 6, is first order markov with continuous transition function and

takes values on a compact metric space ©.

(D2’)  p(-) is jointly continuous.

(T3")  Y(-) is a continuous correspondence.

Finally, while convexity of the individual firms production sets was not required in

the general case, it will be used here to get the desired continuity results. Hence we assume

(M2) For each 0€® the graph of Y(6,-) is convex. ,

An industry satisfies the stationary model if assumptions (S)(D)(B)(T)(SES) or
(SES’) and additionaly (D2’)(T3')(M1)(M2), hold.

16See Duffie et al. for more on this.
17The methods used to prove the continuity of the optimal policy rule can also be applied to
establish that the equilibrium process changes continuosly with the value of parameters of

the model.
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As will become clear in the proof of Proposition 5, the optimal program in the
stationary model is generated by the unique fixed point of the following functional equation

on the space C(0,5) of continuous and bounded functions on ©xS.

(5.1) Vk+1(f,p) = max _ S(0y) + B VE(0",p"16)
{M:}‘ ye}
SUbjeCt to (P”, M,y, ?) 6)6]?(0,[1.)

where I'(6,u) is defined by:

y=[y #(ds,dy).
4 has first marginal p+My, and support on the graph of Y(4,-).

o< cS;;.
w(ds) = [P(ds'| 6,5,)y — )(dy.ds)

- W o

Let g(6,1) be the stationary optimal rule that solves the optimal program, described

in the proof of Proposition 4.

Proposition 5. The optimal decision rule of a stationary model is upper hemicontinuous.

Proof. The optimal program defines a discounted dynamic programming model and any
fixed point of (5.1) gives the value under the optimal policy. We will first establish that the
mapping defined by (5.1) is a contraction mapping on the space of continuous and bounded

functions on (©xS).
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It is easy to verify that function S(-) is continuous and by (B1) bounded above.
Assumption (B2) implies that, without loss of generality, the aggregate input output vector
can be chosen so that ||y||<b for some b<w. The set of measures % that satisfy this
restriction are a tight class and by (T3) M is also bounded above. This implies that T' is
compact valued. Assumption (SES) implies that 4 has support on a compact set.
Alternatively, under assumption (SES’) and (B3) revenues are uniformly bounded above
across all equilibria. Since firms have the possibility of exit, this also implies that in
equilibrium they will be uniformly bounded below. This implies that the support of # can
also be restricted to a compact set. With this restriction, it is easy to verify that the input
output vector y is continuous in . Since P(ds’;,s,y) is continuous, and ©xS compact, the
equation defined in 4. is continuous in (#,¢,0). We now show that condition 2. has a closed
graph. Let 0,0, pn-p and Yu~ ¥, where #n have first marginal p, and support on gr
Y(6n,-). Since gis a regular measure, given >0 there exists a set U’ such that #(U)-»
(A)<e, where A is the graph of Y(6,-). Choose U open and C closed sets such that
['cUcCcU’.  Since Y(-) is upper hemicontinuous, for 6 on a neighborhood of @
gr(Y(6n,-)CU so

#(SxY) = limsup #n(C) ¢ #(C) ¢ #(T)+e
so # has support on the graph of Y(4,-). That the first marginal is 4 follows from weak
convergence. Finally condition 3. can be easily checked to be a closed relation, so I' is upper

hemicontinuous.

We will now prove that it is lower hemicontinuous too. First we will show that given
sequences un-¢ and ;-0 and ¥ with first marginal p and support on gr Y(4,-), there is a
sequence #n - Hwith first marginals pin and support on gr Y(fy,-). By Lemma 3 there is a
sequence #; = ¥ with first marginals u,. We will ‘distort’ those measures appropriately so

that they satisfy the correct support restriction. Since ©xS is compact, Y a subset of a
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banach space and Y(f,s) convex, by lemma [ ] there exists a continuous function
w:OxSxY~Y such that w(fs,y)eY(s) and w(fsy)=y whenever yeY(fs).  Let
h(0,5,y) = (6,5,:(6,5,y)). Define #n by #u(B) = fxB(h(o,,,s,y));/;1 (ds,dy). With this
definition, gn(AxY)=pn(A) and for any continuous and bounded function f:SxY-R

[1(5:3) 4n (ds,8y) = [ 1(0(80,y)) g5 (d85) + [ £(1(fos)) glds,dy) = [ £(5.3)) e(ds.dy).
Thus the sequence #n satisﬁes. all the requirements.

Now let 6,-6 and pn~0 and suppose (¢', M, y, ;;,e)el"(ﬁ,u). Let M,=M and choose a
sequence gn with marginal pin(ds)+Mu(ds!8,) and support on gr Y(fn,-) that converges to
¥ By lemma [ ] there exists a sequence ¢p - ¢ such that 0 < ¢n £ #n . Given these
choices, 1. and 4. define sequences y, and g/, that converge, respectively to y and p. SoTis

lower hemicontinuous.

Using the theorem of the maximum, equation (5.1) defines a mapping from
continuous and bounded functions into itself. This mapping satisfies the monotonicity and
discounting assumptions in Blackwell, and hence it is a contraction. Its unique fixed point
gives the value of the optimal program and, again using the theorem of the maximum, an

upper hemicontinuous optimal policy function 0.
With this proposition, it is now easy to show that there exists a stationary

distribution for the markov process generated by the decision rule g, provided the

equilibrium allocations are bounded, as defined in the following assumption.
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(M3) There is a closed ergodic subset ©/ of © and b>0 such that po(S)<b and

0,0 imply u(S)<b for any equilibrium.
Theorem 3. A stationary model that satisfies (M3) has an Ergodic Markov Equilibria.

Proof. Proposition 5 implies that g is an expectations correspondence. Assumption (M3)
implies that ©x{uch(S)!u(S)<b} is self justified. By Proposition 1.2 in Duffie, Genakoplos,

Mas—Colell and McLennan, there exists an Ergodic Markov Equilibrium o.

6. Applications.

In this section we present applications of the general theory to several models.

a. Investment Under Uncertainty. The model has been described in section 3. Lucas and
Prescott assume that the price of the homogeneous output is D(#t,q;)<P<w. Given the
assumptions on the adjustment cost function, it is not hard to show that any equilibrium
must have k<K for some K<wo. Thus without loss of generality we can, assume the state
space is compact. Since (S2) is satisfied and (S3) is an immediate consequence of the
continuity of the function g(-), the first three assumptions are lsatisﬁed. Assumptions
(D1)—~(D3) are immediately verified. Consumer surplus is assumed uniformly bounded
above, and since the price of the investment good is one, (B2) holds. We have already
mentioned that the output price is bounded, so (B3) is satisfied. (T1) and (T2) are
immediate. Entry is excluded from the model, so (T3) is immediately satisfied. Choosing
Yo={K,0}, (T4) is satisfied and (SES) holds since Y is bounded above by the same vector.

Hence the assumptions of Theorem 1 are satisfied.
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We now show that there is a unique equilibrium. Inverse demand is strictly
decreasing so aggregate output must coincide for all equilibria. Given initial strictly positive
capital stocks for the firms, the problem (3.1) faced by the firm is strictly concave in the
choice of capital accumulation paths. Thus the investment policy of firms is the same
throughout all equilibria. The only source of indeterminacy that may arise is in periods
where demand realizations are too low for all capital to be fully employed. In this case,
while total output will be determined in equilibrium, its distribution across different firms

will not, and obviously firms will be indifferent between producing or not.
Assuming the process for the aggregate demand shock is first order markov with a
continuous transition function and takes values on a compact set, theorem 3 applies and

there exists a stationary distribution for the equilibrium process.

b. Jovanovic’s Selection Model. The model has been broadly described in section 3.2, but to

check that the assumptions are satisfied, more details need to be provided. The variable
cost of production of the firm is ¢(q¢)x, where x;=¢(7s), ¢(-) is a positive, strictly increasing

and continuous with lim ¢(m)=a;>0 and lim &(n)=e2<e. Since this function is strictly
N=—w Mo

increasing, there is a one—one correspondence between values of x€[aj,as] and n€eR.
Jovanovic shows that (x%,n,) is also a sufficient statistic, where x} is the expected value of

X,,, With respect to its prior distribution. Define st=(xt,x§,ge as the state of the firm at t.18
0%

18To make the state space compact, the endpoints a; and a; must be included as well asf\=a.
The transition function needs to be defined at these points too. Note that for x} to be very

close to a; or a, the variance of the prior for x,,, must be very small. So the natural thing
to do is to set this variance at zero (or precision o) for xj at a; or az. Since the precision of

the prior approaches o as n-w, the same will be assumed for n=w. Also note that the
posterior after observing x;=a; or a2 must put probability one on these values. It can be
checked that with these definitions the transition function will be continuous.
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Let the input output vector be given by (q,z), where q is the output of the firm and z
will be an input associated to the entry cost (ce), fixed cost (F>0) and variabie costs, with
price normalized to one. For an incumbent firm with state sy=(x,,x},n), Y(si)={q,z: 22
F+c(q) x¢ }, and for an entrant with s¢=(x,x,,1), Y(st)={q,2: z2ce+F+c(q)x¢}.1? There is
no aggregate uncertainty in Jovanovic’s model, although he allows the inverse demand
function Dy(-) to be time dependent. To accommodate that, we define the aggregate process
g,=t. The allocation pricing function will be given by p1(t,q,2)=D¢(q) while p,=1 for all

allocations.

Jovanovic assumes there is a uniform upper bound to the consumer surplus so (B1) is
satisfied. If g~ then either the number of firms approaches o or the output of a set of firms
with positive measure does so. Given that each firm has a fixed cost F>0, in the former case
7+ . Since variable costs are bounded below by ¢(q)@; which by the assumptions is strictly
positive, increasing and convex, the latter case also implies z¢-w, so (B2) is satisfied. For
sufficiently high price (p ) entry would be profitable even if firms produced for just one
period. Though Jovanovic does not assume that Dy(-) is bounded above, there is obviously
no loss of generality in redefining it to be min{p,Di(q)} so that (B3) is satisfied.

Assumptions (T1)—(T3) are easily verified. Jovanovic assumes ¢’(q)~e as q~w, which

implies that q/(c(q) - 0. Since the cost function c(q)x>c(q)e; and >0, condition (SES) is
e

satisfied. So this model satisfies the assumptions of Theorem 1.

The inverse demand function is strictly decreasing, so by the corollary to Theorem 2

aggregate output must coincide for all equilibria. Furthermore, the exit rule (firms exit

19To be more rigourous, a dummy element indicating whether the firm is an entrant or not
should be added to the state vector.
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whenever their prior mean is above a threshold which may vary through time) is the same
for all equilibria. Applying the same arguments as given in the remarks following the

corollary to Theorem 2, it is easy to establish that the equilibrium is unique.

c. Lambson’s model (identical firms) Lambson (1988) develops an industry equilibrium
model where all firms are identical. There is a single output with cost of production given
by an increasing and convex function c(0:,qt), where 0; is the realization of a stochastic
process common to all firms. The aggregate process has countably many possible
realizations. There is a fixed cost of operation ¢(f;), an entry cost £(6;) and firms that exit
receive a ‘scrap value’ x(6:), where £(6:)>x(6:). Given the aggregate output of the industry,
prices are determined by a continuous and decreasing inverse demand function p(6:,qt)-

Output is uniformly bounded, i.e. for all firms q:<q and lim p(6,q)-0.

q-o

There are two ways in which the ‘scrap’ value may be incorporated in our theory.
The first is to include an element in the input output vector, say ‘scrap’, with price given by
x(6;). Any incumbent firm can produce either one unit or zero of it. When a firm produces
one unit, it moves in the following period to an absorbing state that makes the firm
improductive. Obviously to avoid the fixed cost, it would exit at the end of the period.
Alternatively, it can be shown that by properly modifying the fixed cost and cost of entry an
industry J* with zero scrap value is obtained, and the equilibrium prices and allocations for

J coincide with those of the original industry.?

20Let v, be the value of an incumbent firm in period t. Then v¢=m; + max {xt; PEVy4i}, 5O
vi—xe = Tt —xe—(1=0)xs + max{0,fE¢(vys—Xeer) + BEtxys—x0)}-

Let vi=v,—X, + B, X;—Xi-- Then vi=mi—xt—(1-0) Xt +E; - Xt—X; -+ max {0,6E¢v,,}.- By

construction, xt>0E,v,,, if and only if 0>0E,v,,,, 50 as far as the price of the output good
does not change, the exit rule in both industries is the same. To obtain the same entry rule
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Though Lambson’s boundedness assumptions are somewhat weaker than the ones
used here, it is worth exploring the model with the boundedness restrictions given in our
assumptions since this will allows us to see how the planning problem discussed in Section 4
can be used to characterize the equilibrium. This planning problem specializes to the

following dynamic program:

V(8t,2;) = max D(Bt,zm)—mt&—qat(0t)zt,,l+et)a + EV(6t+i,2,,,0t)
m¢,€4

with the restriction that m>0 and 0<e<z, where D(-) is consumer surplus, z; is the mass of
firms as of the beginning of period t, m; the mass entrants and e, of exits and
z,,,=2%,+m;—€;. Since £:> xt, the solution to the above problem impliés that whenever m;>0,
e;=0 and the converse too. It is also easy to check that since S(6;,-) is concave, V(8t,-) is
too. Hence we can conclude, as in Lambson, that the solution is characterized by stochastic
boundaries [N(#t),X(6t)] and that z,,=2: if 2, is in this region, z,,,=N(#t) if z; is below that
point and z,,,=X(6t) if it is above that point. Finally note that in the case where 6; can
take only finite number of values, the above recursive problem provides a simple algorithm

§

for calculating these boundaries.

d. A model with heterogeneity and investment. Ericson and Pakes (1989) have recently

developed an interesting model of industry dynamics which allows for investment and can
generate entry, exit and heterogeneity in the size and growth rates of firms. For illustrative
purposes, we focus on a simple case considered by them. Firms are distinguished by an

integer valued state weN. From one period to the mext, this state can either remain

the entry cost needs to be adjusted accordingly, by letting &i=&+x—Ey X+ X¢-r
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unchanged, move up one step or down one step. The outcome depends on the amount of
investment made by the firm, denoted by x€R, , and an aggregate shock. More precisely, the

net change is given by:

p(1jx)=A(x)(1-0)
p(1lx) = { p(0}x)=A(x)8 + [1-A(x)}(1-)
p(-1}x) =[1-A(x)]4

There are two possible realizations for the aggregate shock: a ‘bad’ (1) and a ‘good’
(0) shock, with probabilities § and (1—6), respectively. The bad shock moves the state of the
firm down one step while the good one has no effect on it. On the other hand, the intrinsic
luck of firms is represented by the function A, which gives the probability that the firm
moves up one step as a result of its investment x, with constant unit cost c. The net result

is the sum of this aggregate and intrinsic shocks, as described above.

Profits of firms are given by a profit function, #(w,yt) which depends on the state of
the firm and the number of ‘active’ firms in the industry in the period. A firm is active
whenever its state wp&. There is also a fixed (opportunity) cost cf which all firms (active or
not) pay each period and a fixed discount rate f. Firms maximize the eyépected discounted

sum of net profits. In the special case considered the profit function has the form

A(y) if ww

0 otherwise

W(“»Y)={

where A(+) is a strictly decreasing function and A(0)=A(1)=A<a.
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There is a cost of entry to the industry ce. All entrants have initial state wo, but
produce after the aggregate shock is realized. Hence their relevant state is wo when the good

aggregate state occurs and wo—1 otherwise.

Fricson and Pakes look at the case where there is a finite number of firms in the
industry (rather than a continuum) and consider markov equilibria of the associated
(anonymous) dynamic game. This, of course, is a valuable approach since firms have (and
recognize having) an impact on the aggregate state of the industry. However, for an
industry with a large number of firms, e.g. one where costs of entry and fixed costs are small,
the relative impact of individual firms’ actions on the aggregate state will be small, and
aggregate uncertainty will come primarily from the aggregate shock. This makes a model
with a continuum of firms a useful benchmark to consider. ‘We now show how this can be

done in our framework.

Let the aggregate state 6i{1,0}. We will denote the state of the firm by sg=wi+ 6.

The production technology will be given by:

(q,~,—x), x20, x20 ifs—Pw

Y(4,5)

- (0,~$,—x), x>0 otherwise

and prices given by pi(Q)=A(Q) , p>=1 and p3=c.
Notice that this implies the indirect profit function given above.

Let P({s—0+1}}0,5,x)=A(x) and P({5—0}}0,5,x)=1-\(x).
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To include the cost of entry, we can follow the procedure described in Section 2.

Using some additional assumptions Ericson and Pakes establish that all firms with
state above a threshold will not invest, and that all firms with states below a certain
threshold will leave the industry. The expected discounted returns of firms are uniformly
bounded above by '1é7i , 50 the optimal investment policy has an upper bound. Hence S can
be restricted to a compact set and so can Y. All remaining assumptions of our theorems are
easily verified, so an equilibrium exists. Furthermore, since demand is strictly decreasing,
the equilibrium price process is unique. Again, using the same arguments as in the remarks
following the Corollary to Theorem 2, it is easy to show the equilibrium is unique. Finally,
it is not hard to check that the assumptions of Theorem 3 are also satisfied, so the

equilibrium process has a stationary distribution.
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Mathematical Appendix

Lemma 1. i) S is measurable and differentiable in y. ii) S is concave in y and satisfies

Zp;yi<S(dy)
Proof. i) It is enough to establish these properties for the functions Sj defined by S;(6,y) =

i 0 . o tiae e .
Xy:20 ./; pj(6,x)dx — xyj <0 f ‘pj(o,x)dx. Differentiability is immediate (even at y=0).

Measurability is proved by appiying (part of) Fubini’s theorem (see Ash, Theorem 2.6.4) in
the following way. Let wy=(0y). For any lebesgue set ACR, Let p(wi,A)=AN[0,y])+
/An[y,0]), where / denotes the lebesgue measure in the real line. Note that p(-,A) is a
continuous function and hence measurable. It is also easy to see that u is uniformly o—finite.
Then S;j(wi)=/pj((w:),w2)u(wr,dwy) is a measurable function.

(ii) The inequality and concavity are immediate from the fact that all p; functions
are nonincreasing (assumption D3) o.

Lemma 2. Consider two feasible input output processes y’€Y and yeY and for 6e[0,1] let
yd=8y'+(1—6)y. Then [S(y5,6)—S(y,0)]/6is decreasing in &.

Proof. Let g(8)=S(y3,6)-S(y,0). By Lemma 1 this is a concave function and by definition
g(0)=0. The result follows immediately .

Since results for stationary dynamic programing will be used in the proof of the next
two Propositions, in order to translate the non stationary problem into a stationary one we
must first define a space that includes all possible realizations of the process {6:}. The
construction parallels the one provided in Bertsekas and Shreve (pgs.242—46) and some of

the results presented there are used. Let ® = U;:o Ot endowed with the topology that makes
the mappings p;:0t - & given by p(#t)="0t a homeomorphism. We will use gt (with variable
t) to denote a typical element of & and A to denote its distribution. With this topology @ is
a borel space. Note that 4 is a universally measurable function from ©t-+4(SxY) if and only
if the corresponding function #: &-H(SxY) is universally measurable on @. The same holds
for ¢; and M;.
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T
Let Ve(ft,m) = sup  E{ T APy u¥ il 6t} on the set of feasible allocations starting
yt +1 1=0
from (6t,u) with bounded value, as described in 4.1 . Note that since the technology set is

linear in M, ,,, no increase in the value of the objective can be obtained by increasing M,..
Thus the values above can be achieved even with the restriction M,=0 for all 7>t.

We now show that this derived stochastic control problem (with M= 0 for all T)
satisfies the basic definitions of an optimal stochastic control model in Bertsekas and Shreve.
We will refer to the following model by SM1.

i) The state space for this problem is X=&xH(S), which is a borel space. The controls
are (#,¢) in the space C=H(SxY)xM(SxY) which is also a borel space, where for a measurable
space Z, H(Z) denotes the space of positive finite measures on Z.

i) Let U(8t,u)={(%,9€C | # has first marginal 4 and support on the graph of Y(6,-)
and ¢ ¢ ;u} We now show that the graph of this correspondence, denoted by I', is an
analytic set. If it were not for the support restriction, this would be an immediate
implication of weak convergence. Let ¢(s,y,0t) be the indicator function of {s,yly¢Y(és)};
since Y(-) has measurable graph, this function is also measurable. Abusing notation, let
7(ds,dy, # )= ¥ (ds,dy). The function 7 is trivially measurable in . By Lemma 2 in

Appendix 5 of Dynkin and Yuskevich the function I f)H f o(s,y; 0t)7(ds,dy, 4’“) is borel
measurable. This function has zero value for all # with support on {(s,y):y€Y(6t,s)} and
hence the set of pairs (&, ;/) that satisfy this condition is borel measurablg, so I' is analytic
(actually borel measurable).

iii) Let the disturbance space be ©, which is a borel space and the disturbance kernel
be F(d6;#t), where F is the conditional distribution of the process {f:}, so it is borel

measurable.
iv) The system function takes (pt,ﬂt,0t+l,;;,e)H(Ht"l,uM), where @t*1=(6t,6,,,) and

.., satisfies the feasibility condition F.4 given in section 2 (with M, set to zero), which by
assumptions (S) define a borel measurable function.
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v) The return function p(#t)(/yd ;;)) is the composition of borel measurable functions
and thus borel measurable.

Let M=(I;,1I,...) M;:X~P(C), where P(C) denotes the set of probability measures on
C)denote a policy for the above stochastic model, as defined in Bertsekas and Shreve
(chapter 9), and denote by Vy(6,u) the value under this policy.

Define v(#t,s) as in (3.1). Given a price process {ps} the problem defined by (3.1)
can be easily checked to satisfy the definition of an optimal control model with state space
X=&x$ and control space Y. Let 7=(my,ms,...) m:X-P(Y) be a policy for this stochastic
model and let v, (#t,s) denote the value under policy 7. We will denote this model SM2.

There is a correspondence between policies for SM1 and SM2. To illustrate this,
consider the ‘production’ part of a policy II for SM1, which is given by the universally
measurable function #: ®-4(SxY). By Proposition 7.27 in Bertsekas and Shreve there exist
stochastic kernels (dy;6t,s) and p(ds;0t) such that a(-) is U(®) e B(S) measurable and
u(ds;0t) is % (&) measurable, where %and 2 denote respectively, the universal and borel
o—algebras, that satisfy:

;;(AxB;m) = f7r(B;0t,s);t(ds;0t) for all sets Ae Z(S) and Be B(Y).
A

Note that this formula implies p(ds)=gu(ds;ft) and that for almost all (6t,5)
m{(Y(05);s,0)=1, since Y(#t,s) is the section at s of Gr Y(#,-). By appropriately altering =
on this measure zero set2! we obtain a policy for SM2 that corresponds to .

In fact, a deterministic model (D) can be defined following the construct in Bertsekas
and Shreve, section 9.2, that corresponds to both the SM1 and SM2 models. We refer the
reader to the reference. Let II/ denote a policy for (D).

With these elements in mind we will prove Proposition 3.

21This can be done since there exists a universally measurable selection from the set of feasible
input output choices.
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Proof of Proposition 3. Since model (D) corresponds to both SM1 and SM2, and by (B3’)
and (SES) or (SES’) the return function is bounded above, Proposition 9.5 in Bertsekas and
Shreve imply that

(*) V()= [ v(85)m(ds).

where V(@t,u)=sup Vp(,m) and v(f,s) is defined in a similar way. This equation
n

provides the key connection between the single firm equilibrium and the Industry

equilibrium.

If II is an optimal policy for SM1, there is a corresponding policy 7 for (D) and thus
a policy m corresponding to SM2, all of which are optimal (Corollary 9.5.1). By
construction, 7 gives the conditional distributions for input output choice and exit of II, and
since it is optimal, it must have support on profit maximizing choices. Hence a single firm
equilibrium satisfies (ii) and (iii) of the definition of Industry equilibrium. Also note that

by (¥)
V(6 m+Mv) = V(0t,u)+MV(8,v) = V(0t,u)+M[v(6t,s)(ds)

so condition (iv) is verified. Thus any single firm equilibrium is an Industry equilibrium.
Conversely, given an Industry equilibrium with optimal policy 7 for SM2, the corresponding
policy I for SM1 is optimal. It is then easy to check that the Industry equilibrium is also a
Single firm equilibrium 0.

¢

We now establish the existence of a solution to the optimal program . This problem
is identical to the single firm problem described above but with a different objective and
without the restriction of My=0. It is easy to check that with these modification (i1)—(iv)
satisfy the definition of a stochastic control model. The last condition is also satisfied
replacing (v) by:

(v*) The return function S(8,(/ydy)) which applying Lemma 1, is the composition

of borel measurable functions and thus borel measurable. To simplify notation we refer to
this function as S(ft, %).
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To prove the existence of an optimal solution we show that the set

Uk(otaﬂ't)A) = {(Mt);/t 1et)€U(0t1ﬂt)=S(9t);‘) + ﬂka(qu,/j“l: m) 2. A}

where gy, %, and ¢, satisfy F.4 in the definition of feasiblity, is compact in C, where Vk
corresponds to the k—th iterate on the optimality equation and V9=0. By Proposition 9.17
in Bertsekas and Shreve, this implies the existence of an optimal nonrandomized stationary
policy.

We first establish that the optimality equation maps bounded measurable functions
that are upper semi—continuous in p into the same class. By (B1)—(B3) the return function
S(#t,-) is bounded above. We will prove that it is upper semicontinuous.

We first consider case (SES), i.e. when Y is bounded above. Given that S(6t,-) is
continuous, it suffices to show that whenever % -4, limsup, y® €y where

yr=/ y;;“(ds,dy) and y is similarly defined. Let cn€RX be a sequence decreasing t0 —w and

let xn denote the indicator function of [y>cn]. Choose m so that f Y ;;( ds,dy)+e > f XnY ¥
(ds,dy). Since xmy is an upper semicontinuous function of y and by (SES) it is bounded on
the domain of integration, 4" -« implies

limsup,, [ yn(ds,dy) < limsup, S xay g(ds,dy) < f xuy g (ds,dy) < [ yp(ds,dy)+e.

]

Since € can be chosen arbitrarily small, the result follows.

We now consider the alternative assumption (SES’). By (B1) there exists s* such
that S;(#t,-)<s*/k , where k is the number of goods (inputs and outputs) from the definition
of an Industry. We now show that for ags* the set {yjy=/y% (ds,dy) for some % with
support on gr Y(#,-) and S(6ty)>a} is closed. Let yo-y be a sequence satisfying the
condition. Let { 1} be the associated sequence of measures. This sequence is tight22 so, if
necessary along a subsequence, it converges to some measure ¥, which also has support on

22Tightness results from the fact that S(ftyr)>a implies that the sequence ym is norm
bounded. It is easy to check that this implies that »» is a tight sequence of measures.
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Pje€
gr Y(6,-). For e>0 choose ¢>0 so that [[y]|2c implies ||y||/|yj|<a—_*_—s* and let xbe the
indicator function of the set [yly;i<c|. As before x.y is an upper semi continuous function on

Rk. Note that j|‘| ” ll9ll #2(ds,dy)<e , for otherwise Sj(6t,yn) < pify;#(ds,dy) < —(a+s*).
yli2c

In consequence

timsup || gn(ds, dy)—e< limsup [ xcpn(ds,dy) < [ xc(dsidy) ¢ [ p(ds,dy),
so S(#t,y)>a and S(@,-) is upper semi continuous.

Since (B1) implies that Vk is bounded above by an integrable function, a direct

application of Fatou’s lemma implies that f Vk(dt+,p,,,6t) is upper semi continuous in
{t,4, whenever Vk(8t+t,ut*1) is. Finally note that given &, py,, is linear in g¢ and ¢; so for
all #t the objective of the functional equation (and also in the definition of Uy) is upper
semicontinuous (an bounded) in the controls. Furthermore, by (B2) the definition of Uy
implies that the input output vectors associated to Yt must be normed bounded, so 7 must
belongs to a tight set and that, by condition (T3), Mi<M for some finite M. This implies
that the set of (Mg, F ¢t) that make the objective greater than or equal to X is compact.

To establish that Vk*1(#t,-) is upper semicontinuous, it suffices to show that u(et,-)
has closed graph. This also completes the proof of existence since it implies that U(#,u;) is
a closed set. Without the support restriction using the definition of weak convergence of
measures it is easy to check that the graph of U(#,-) is closed. To verify that the support
restriction, note that since the graph of Y(#,.), which we will denote by T, is closed, 47 - »
implies 4 (I') 2 limsup #*® (T') and obviously # (§xY) = lim gn (SxY). Thus
¥ () = &0 (SxY) implies that ghas also support on T, and the proof is complete O.

Lemma 3. Given a compact metric space S and a complete, separable metric space T
consider their product SxT with the product o—algebra of their respective borel o—algebras.
For each measure p on S let 7{x)={measures v on SxT with marginal x on S}. Then 7is a
lower hemi—continuous correspondence.
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Proof. Given p -y and vey(u) we must construct a sequence v e(p,) With v-v. Intuitively,
for each p, we want to ‘distort’ v minimally so that its marginal coincides with instead of
p. Since p,~u we may expect that this distortion disappears in the limit.

Since the spaces S and T are separable metric spaces, they have countable bases By
and B, with A p—continuous for all AeB; and B S,.)—continuous for all BeB,. Let
Sm={Amj:j=1,..,m} and T ={B,k=1,...,m} be the exhaustive sequence of subdivisions of S
and T constructed from B, and B, as described in Lemma 6. Thus Sj,(Tp.y) is 2

refinement of S_(T,), each set AeB, (BeB,) is the finite union of sets in :L:J’ISm(s‘l’Jfle) and the
sets Ap; and By are p—continuous and 1(S,.)—continuous, respectively.

Suppose AeB, and BeB;. Then we can find partitions S and T, such that A is the
union of sets in S and B of elements in T,,. Thus AxB is the finite union of rectangles in

SmmeE{Amijmk}?,kzl. . Thus the collection of sets {Smme}:=1 is a basis for the product
topology in SxT and hence is convergence determining (see Theorem 2.2 in Billingsley).

Let ap;=4(Ag;*Buy)/ W Ay;xT) whenever #(A;)#0 and 0 otherwise. For each (m,k)
choose t, €B,,. Define the measure v, on SxT by setting

van(C)= 2| anim(r(COA g {tus}))

for each C in 87, where = is the projection function on S. Define v, similarly with
measure p instead of ;. The set functions v, and v, are clearly positive, measures since p,
and p are. For any A in 8, m;(AxTNA ;% {ty})=ANAy;. In consequence,

Vnm(A"r'[‘)=jg}1 kglamjk ”’n(AnAmj)=un(A)
s0 p, is the marginal of v, and by a similar argument p is the marginal of v,

We will now show that v, v, and that v, converges to v. Let A be a p—continuity
set and B a (S, )-continuity set. Suppose  AxBNAx{ty}#¢. Then
AxBNA jix{ty }=ANA <{ty}. Since A and A, are p—continuity sets, so is ANA;. Hence

pa(ANA:)-u(ANA ;) and thus Vym(AxB)-v,(AxB), 50 v,y (Theorem 3.1 in Billingsley).

nm "m
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Note that Vm(Amjmek)=amjkp’(Amj)=[V(Amjmek)/V(AmjxT)]l‘(Amj)=V(Amj"Bmk)'

By additivity of v it is also true that V., (Agj*Bu)=/(Agj*Bpy) for all m”2m.

Consequently 1im vy, (A ;B )-¥(Ay;*Byy) for all sets A, and B, Since this class of
m’-w
sets is convergence determining, v -v.

Our final step is to extract a sequence v, converging to v with marginals p,. Let

N(m) be such that if n>N(m) then p(unm,um)<% . Without loss of generality choose N(m) to
be increasing in m. For n=1,..,N(1) let v,;=v,,. For N(m)<n<N(m+1) let v=vy, Let

¢>0 and choose M so that p(v,v)<e/2 for all m>M and 1%)[<e/2. Then for all n)N(m) we
have

p(un,y)gp(un,um)+p(um,1/)<—;l-+e/2$e for some m>M 0.

Lemma 4. Let 7:S-—T be a continuous correspondence with closed and convex values from a
paracompact space S to a Banach space T. There exists a continuous function h:SxT-T such
that:

i) h(s,t)€n(s))
and ii) h(s,t)=t for te1(s).

Proof. Define the correspondence I':5xT-T by letting I(s,t)=t for all (s,t)egr(7) and
I'(s,t)=1(s) otherwise. T is lower hemi—continuous, with closed and convex values. By
Michael’s selection theorem I' has a continuous selection h:SxT-T. This function satisfies
conditions i) and ii) o.

Let T be a correspondence defined by

I'(x)={yeM:0<y<x}

where xeM and M is the space of positive measures on compact metric space S with
total mass uniformly bounded..
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Lemma 5. I’ is lower hemi—continuous.

Proof. Suppose x~x and 0<y<x. Without loss of generality we may consider x#0 We must
find a sequence y, such that y, -y and 0<y,<x,. Note that if the space were discrete then
letting y,(j)=min{x,(j),y(j)} the sequence y, would satisfy the above. For an arbitrary
space we will construct an exhaustive sequence of subdivisions to prove via an
approximation the existence of such a sequence y,.

Let {P_} denote an exhaustive sequence of subdivisions and set P = U P, We will
denote a typical element of subdivision P by A ,. By Lemma 6 we can assume that {P}
satisfies:

i) Every set A, €P is an x—continuity set.

ii) P is a convergence determining class.

Define y_eM by letting y(A)=[y(Apy)/x(Ay)Ix(A) whenever ACAy. This is the
measure x scaled down by a factor that depends on the y measure of the sets of the partition
relative to the x measure. For each pair (n,m) we will define a measure y,, by following a
similar scaling procedure. For this purpose, let

g =min{y(A ) Xn (A} Xn (A ) if X,(Ag)>0 and set it to zero otherwise.
Let y,(A)=0pnx,(A) if ACA . Clearly 0<yp,<xp,

We now show that 1im y_ =y, We will show that y  (A)-y,(A) for all sets A such
N-w
that y, (0A)=0. Without loss of generality we can restrict attention to a set A contained in

some A, . Notice that for A to be a continuity set of y, it must be the case that either
¥(Ap)=0 or that x(8A)=0. The first case is trivial. In the second case x,(8A)-x(0A). But
since A, is a continuity set of x, x,(Apy) also converges to x(Apy) 8O Qpy, converges to
y(A)/x(Ag,). In consequence y, -y, as desired.

We now show that y~y. Notice that any set Ay, eP is the finite union of sets in P,
for m’>m so by construction of y, ¥, (Ap)=Y(Am)=Y¥(Ap). Since P was chosen to be

convergence determining we can conclude that y,-y.

We will now use a ‘diagonal’ type argument to generate the sequence y,. Let N(m)

be such that for n)N(m) P(Ymmym)<'1,f{- Without loss of generality take N(m) to be strictly
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increasing. For n<N(2) choose y, =y, and for N(m)<n<N(m+1) choose y,=ypy, Let e>0.

Let m be such that p(y,y)<e/2 and 1—11-<e/2. Choose nd>N(m). Then y =y, for m’>2m
and n>N(m’). In consequence p(¥ )PV nms Ym ) FP(Yn,¥)<e. Hence y,y and 0<y <x,
so I is lower hemi—continuous 0.

Lemma 6. Suppose S is complete separable metric space and xeM(S). Then there exists an
exhaustive sequence of subdivisions {P} of S 23 such that

i) All sets in each P are x—continuity sets.

ii) P =mtlePm is a convergence determining class.
Proof. Since S is separable metric, the collection of open sets that are x—continuous is a base
for the topology of S and the base can be chosen to be countable. Define the exhaustive
- sequence of partitions P as done in Gihman and Skorohod. By construction, these sets are
x—continuity sets. P is closed under the formation of finite intersections and each open set
in S is a finite or countable collection of elements of P. By Theorem 2.2 in Billingsley P is a
convergence determining class, i.e. if p,(A)-u(A) for all AeP we may conclude that g -p 0.

23For definitions and results see Gihman and Skorohod, especially pg. 63 and Lemma 5.
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