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Abstract

This paper examines a class of dynamic decision problems with ir-

reversible actions and its embedding in strategic settings. Agents face

random opportunities for taking irreversible actions that, together with

a private random shock, determine their final payoff. Information is

given by a signal process that arrives throughout the decision period.

Our main contribution is methodological; we provide a decomposition

of the optimal—and equilibrium—solution into a dynamic component

and a static one. The solution to the former problem is independent
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of the specific payoff function of the agent beyond some general regu-

larity conditions. For games of incomplete information with privately

observed actions, this decomposition reduces the problem of finding

equilibrium strategies to a solution of a static Bayesian game. The

setting applies to a class of strategic problems, such as some tourna-

ments, entry games, intermediation, and dynamic commitments. Two

detailed applications are considered. Keywords: Dynamic decision

problem, Dynamic games, Value shading, Decision under uncertainty.

JEL codes: C73, D44, D81, L81

1 Introduction

We consider a class of dynamic decision problems that appears in many eco-

nomic applications, such as search, entry games, dynamic auctions, R&D races,

and other contests, with the following features: First, agents make decisions

over a period of time, such as bidding or investing, that result in a random

final payoff. Second, throughout the decision period, agents observe signals

that are correlated with this final payoff. For example, innovators might learn

about the value of obtaining a patent over time, employees might learn about

outside opportunities or how much they value current employment, and bid-

ders might learn about outside options or alternative uses of their resources.

Third, opportunities for taking actions are random. These random times might

represent random opportunities for undertaking actions such as R&D invest-

ments, or executing trades, or in the case of auctions could be the result of

frictions that might impede the precise timing of bids and information acqui-

sition, or simply inattention.1 Fourth, decisions are irreversible and can only

be increased over time, such as sunk investments in R&D or the impossibility

of retracting bids in some auctions.

These conditions make solving dynamic decision problems using standard

1This is a standard assumption in the class of revision games, developed in Kamada
and Kandori [2011] and Kamada and Kandori [2015], as well as in models of sticky prices
following Calvo [1983].
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methods complicated. Particularly, when there is a need to solve dynamic

stochastic decision problems repeatedly, standard methods for solving them

can pose a computational burden, as in calculating the best responses in

strategic settings or estimating a model’s deep parameters.2 In this paper,

we introduce a new methodology to solve dynamic problems of the above class

under a weak separability assumption on payoffs.

Using our methodology, the problem of finding an optimal strategy can be

separated into two parts, one involving the solution to a dynamic problem

and the other to a static one. The solution to the first depends only on the

properties of the stochastic process for values and decision times, but not

on the payoff function. As a result, changes in the payoff function do not

require solving repeatedly the more complex dynamic problem. This feature

is extremely useful in strategic settings, where the payoff function depends on

other players’ actions. As an example, in our application to dynamic auctions,

equilibrium dynamic bidding strategies can be obtained from the Bayesian

Nash equilibria of a static auction. The aforementioned feature is also useful

when estimating parameters in the final payoff function, as changes in these

parameters do not require solving the dynamic part of the decision problem

repeatedly.

The key element of our methodology is defining a correspondence between ex-

pected value at a point in time (e.g., the expected value of winning a patent

race, given the information acquired) and what we call its equivalent final

value. While in a static setting an agent would take the action that maximizes

payoffs given its current value, in our dynamic decision problem the agent

chooses an action that is optimal for the equivalent final value, had this been

the final choice. The latter is usually lower, a property that we call value shad-

ing. Values and, correspondingly, actions in the dynamic decision problem are

shaded because of the option value of future choices and, under mild condi-

2This is known to be a problem with nested fixed point algorithms, as in Rust [1987].
While the indirect methods building on Hotz and Miller [1993] and subsequently the appli-
cation to games by Bajari et al. [2007] can be used for estimation, many of the interesting
counterfactuals still require solving the full model.
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tions, the incentives for shading decrease as the decision problem progresses.

Thus, shading contributes to delay and underinvestment in the early stages of

decision problems.

We now provide a more detailed description of our modeling framework and

our solution method. The agent or decision maker faces a random sequence

of decision times {τn} in a time interval [0, T ]. At these decision nodes, given

current information, the agent chooses a non-decreasing sequence of actions

{an} from a totally ordered set, e.g., level of capital in the presence of irre-

versible investments. Final payoffs are given by a function U (vT , aT ), where

aT is the final outstanding action and vT a real valued random variable. The

function U is assumed to be linear in vT and supermodular in (vT , aT ) but is

otherwise unrestricted.

Information and decision times are modeled as a joint Markov process of signals

and decision times {vn, τn} that are also sufficient statistics for the expected

value of vT . Our process is very general, allowing, for instance, the arrival of

future decision opportunities to depend on the current expected value (e.g.,

more attentive response when expected values are higher). Moreover, the

inclusion of time as a state variable allows for a non-stationary Markov process

in values, as is the case in many Bayesian learning environments. An optimal

strategy specifies choices an = S (vn, τn) that maximize the expected value

E0U (vT , aT ).

Here we describe our methodology for solving this class of problems in more

detail. The first step of our procedure maps each decision node, (vn, τn), into an

equivalent final value ṽ, with the property that the optimal action at ṽ, which

maximizes U (ṽ, a) , is the same as the optimal action at (vn, τn). This can be

illustrated with the aid of Figure 1. Consider a decision node (v0, t0) where

the agent chooses an optimal action a0. The indifference curve represents all

points in the value-time space where the agent would choose the same optimal

action a0. In particular, this action is optimal at the end of the decision time

T, when the agent’s value is ṽ.

The indifference curves (e.g., the one depicted in Figure 1) have two main
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Figure 1: Indifference curves for actions

Note: All points on this curve result in the same optimal action value, a0.

properties, given some general assumptions. First, they are downward slop-

ping; second, they are independent of the particular payoff function and de-

pend on the Markov process that determines the uncertainty about valuations

and timing of future opportunities to update actions. To understand the intu-

ition of these two findings, it is best to explain how these indifference curves

can be used to predict the actions through the decision problem and how they

are determined. Consider the choice a0 at decision node (v0, t0). This choice

remains the final decision of the agent if the agent has no other opportunity

to revise its choice or chooses not to do so at any future opportunity. The

latter happens when at all future opportunities the pair of value and time lies

below the indifference curve passing through the initial decision node (v0, t0).

This creates a source of adverse selection against the agent’s future self, as

the current choice applies when the agent chooses not to exercise any future

revision options, a choice that is correlated with a lower future value.3 This

results in a downward slopping indifference curve because these negative out-

comes happen more often when agents are far from the end of the decision

time and less often when they are closer to the end time. This downward

sloping indifference curve results in players’ optimal action to be one in which

3An analogue result is found in Harris and Holmstrom [1982], where initially workers’
wages are shaded below marginal products, as the wage is effective in the future only if it
is less than or equal to the realized marginal product of the worker.
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they act as if their value was lower any time that there is a chance of updating

their action in the future, a property which we call value shading. Under fairly

general conditions discussed in the paper, value shading decreases over time.

Additionally, we show that the indifference curve has the following self-generating

property, which is independent of the particular payoff function. Starting at

the point (v0, t0), consider all paths where at future decision nodes (vn, tn)

the value lies below this indifference curve. Those are the paths where the

agent will not increase its initial choice a0; therefore, it will remain the agent’s

final action. The expected final value conditional on this set of paths is pre-

cisely ṽ, and the same property holds for any point on this indifference curve.

This property, which we call self-generated expectation, depends only on the

stochastic process for values and decision times, and is thus independent of

the specific payoff function U (·).4 While the final payoff function is relevant in

determining action a0, which is the solution to maxa U (ṽ, a), it is not relevant

for determining the indifference curves and thus for the mapping from decision

nodes (vn, τn) to equivalent values ṽ.

Our results extend to dynamic games with incomplete information and pri-

vately observed actions, where our main theorem shows that we can find

equilibrium strategies by solving a Bayesian Nash equilibrium of an associ-

ated static Bayesian game. The corresponding distribution of values for each

player in this Bayesian game is a function of only the joint stochastic process

of valuations and decision times independently of the payoff function (e.g., it

would be exactly the same for different classes of auctions). The equilibrium

strategies in the dynamic game are easily derived from those in the associated

Bayesian game. This result extends to dynamic games with observable actions

when the associated Bayesian game has an equilibrium in weakly dominating

strategies.5

4We borrow this term from Abreu et al. [1990]. While related, it is a different concept.
Our indifference curves are self-generating as they define the boundaries on future realiza-
tions for the calculation of conditional expected values, which in turn are constant along
these curves.

5Without this assumption, this result can also apply to finding open loop equilibria,
which for large games might approximate closed loop equilibria (see Fudenberg and Levine
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Our model applies to many dynamic decision problems that involve optimal

stopping, such as job search or exercising an option, or irreversible investments

(see Dixit et al. [1994], Lippman and McCall [1976]). Also, the model can be

easily extended to allow for flow payoffs that accrue prior to the end of the

game, for example, an electricity company selling future contracts to be ful-

filled at some future time (see Ito and Reguant [2016]). Our method can be

embedded into strategic settings, such as entry games with a deadline, where

the number of entrants is known after the deadline. Other possible strategic

settings for our model include dynamic tournaments where over time agents

might receive information about their private values of winning the tourna-

ment, as in the case of a promotion where agents have outside employment

options.

As a more thorough application of our methodology, we consider two detailed

examples. The first one is the case of dynamic second price auctions, such as

eBay and GovDeals. As these auctions take place over a considerable length

of time, dynamic considerations can be important for understanding bidding

behavior and improving auction design. Our setting is similar to those in

Kamada and Kandori [2011], Kamada and Kandori [2015], and Kapor and

Moroni [2016], with the difference that we allow the valuation of participants

to change throughout the course of the auction. Our second application is on

stationary equilibria of anonymous sequential games, based on Jovanovic and

Rosenthal [1988].

The rest of the paper is organized as follows. Section 2 provides a simple

example that conveys the main intuition and results in the paper. Section

3 describes the general model and provides a set of applications that can fit

the general model. Section 4 discusses the intuitive and formal analysis of

the model and describes how to embed the results into games. Section 4.4

describes our main results. Section 5 discusses the extension of the paper

to random termination time and gives properties for the case where values

are independent of Poisson arrivals for bidding times. Section 6 discusses

[1988]). It can also apply to solving for equilibria in mean field games.
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two applications of the model in more detail. All proofs are deferred to the

appendix unless specified.

2 A Simple Example

We start our analysis by considering a two-period contest that illustrates some

of the main features of our methodology. There are N players and two periods,

t = {0, 1}. In the first period, after observing a private signal vi0 drawn from

some distribution Hi (vi0), agents choose the level of a private action ai0 ≥ 0,

e.g., studying for a test or allocating resources to a project. In the second

period, each agent privately observes its value of winning the contest vi1 drawn

from the conditional distribution Fi (.|vi0). With probability pi the agent has

the option of increasing the action to any value ai1 ≥ ai0, e.g., studying more

or allocating additional resources to the project. With probability (1 − pi),

the agent is unable to revise its choice; therefore, ai0 remains its final action.

The agent with the highest final action, ai, wins the competition and receives

payoff vi1 − ai. For any other player j, the payoff is equal to −aj. Both the

signals and final values are drawn independently across agents. For notational

convenience, we suppress the index i unless needed to avoid confusion.

A player’s strategy specifies choices a0(v0) and a1 (v0, v1) for the first and

second period, respectively, with the restriction that a1 ≥ a0. The latter choice

is only relevant if the agent has an opportunity to increase its action in the

second period. Letting G denote the distribution for the highest final action

of the other players, an agent’s expected utility given final value v and action

a is

U (v, a) = G (a) v − a. (1)

Assume there is a unique action a that maximizes (1) and it is strictly increas-

ing in v. Denote this solution by S (v). This is the optimal action in a static

setting.6 Given the action a0 in the first period, there is a unique threshold ṽ

6We make these assumptions and others below in the analysis of the example for conve-
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a0

a0

p

1 � p

v1 > ṽ
<latexit sha1_base64="4fI0LiSOiLl8v6NozEsawxMzzqM=">AAAB9HicbVC7SgNBFL3rM8ZXVLCxGQyCVdix0UqCNpYJmAckS5ydnU2GzM6uM7MLYcl32FgoYuvH2Nn4LU4ehSYeuHA4517uvcdPBNfGdb+cldW19Y3NwlZxe2d3b790cNjUcaooa9BYxKrtE80El6xhuBGsnShGIl+wlj+8nfitjCnNY3lvRgnzItKXPOSUGCt5WQ9fdw0XAcuzca9UdivuFGiZ4DkpV4/r3w8AUOuVPrtBTNOISUMF0bqD3cR4OVGGU8HGxW6qWULokPRZx1JJIqa9fHr0GJ1ZJUBhrGxJg6bq74mcRFqPIt92RsQM9KI3Ef/zOqkJr7ycyyQ1TNLZojAVyMRokgAKuGLUiJElhCpub0V0QBShxuZUtCHgxZeXSfOigt0KruNy9QZmKMAJnMI5YLiEKtxBDRpA4RGe4AVencx5dt6c91nrijOfOYI/cD5+AFrJk/4=</latexit><latexit sha1_base64="FW1Yqvo6dxnSZXoWxN+ptEEKM64=">AAAB9HicbVC7SgNBFJ31GeMrKtjYDAbBKuzYaCUhNpYJmAckS5idnSRDZmfXmbsLYcl32FgoYqlf4RfY2fgtTh6FJh64cDjnXu69x4+lMOC6X87K6tr6xmZuK7+9s7u3Xzg4bJgo0YzXWSQj3fKp4VIoXgcBkrdizWnoS970hzcTv5lybUSk7mAUcy+kfSV6glGwkpd2yXUHhAx4lo67haJbcqfAy4TMSbF8XPsWb5WParfw2QkiloRcAZPUmDZxY/AyqkEwycf5TmJ4TNmQ9nnbUkVDbrxsevQYn1klwL1I21KAp+rviYyGxoxC33aGFAZm0ZuI/3ntBHpXXiZUnABXbLaol0gMEZ4kgAOhOQM5soQyLeytmA2opgxsTnkbAll8eZk0LkrELZEaKZYraIYcOkGn6BwRdInK6BZVUR0xdI8e0BN6dlLn0XlxXmetK8585gj9gfP+A6wKlbo=</latexit><latexit sha1_base64="FW1Yqvo6dxnSZXoWxN+ptEEKM64=">AAAB9HicbVC7SgNBFJ31GeMrKtjYDAbBKuzYaCUhNpYJmAckS5idnSRDZmfXmbsLYcl32FgoYqlf4RfY2fgtTh6FJh64cDjnXu69x4+lMOC6X87K6tr6xmZuK7+9s7u3Xzg4bJgo0YzXWSQj3fKp4VIoXgcBkrdizWnoS970hzcTv5lybUSk7mAUcy+kfSV6glGwkpd2yXUHhAx4lo67haJbcqfAy4TMSbF8XPsWb5WParfw2QkiloRcAZPUmDZxY/AyqkEwycf5TmJ4TNmQ9nnbUkVDbrxsevQYn1klwL1I21KAp+rviYyGxoxC33aGFAZm0ZuI/3ntBHpXXiZUnABXbLaol0gMEZ4kgAOhOQM5soQyLeytmA2opgxsTnkbAll8eZk0LkrELZEaKZYraIYcOkGn6BwRdInK6BZVUR0xdI8e0BN6dlLn0XlxXmetK8585gj9gfP+A6wKlbo=</latexit><latexit sha1_base64="T5LKtk7lrtMlvJveuMWyy/1nG5o=">AAAB9HicbVBNS8NAEN34WetX1aOXYBE8lawXPUnRi8cK9gPaUDababt0s4m7k0AJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0PO+nbX1jc2t7dJOeXdv/+CwcnTcMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+m/ntDLQRsXrESQJ+xIZKDARnaCU/69ObHgoZQp5N+5WqV/PmcFcJLUiVFGj0K1+9MOZpBAq5ZMZ0qZegnzONgkuYlnupgYTxMRtC11LFIjB+Pj966p5bJXQHsbal0J2rvydyFhkziQLbGTEcmWVvJv7ndVMcXPu5UEmKoPhi0SCVLsbuLAE3FBo4yokljGthb3X5iGnG0eZUtiHQ5ZdXSeuyRr0afaDV+m0RR4mckjNyQSi5InVyTxqkSTh5Is/klbw5mfPivDsfi9Y1p5g5IX/gfP4AzCKSGQ==</latexit>

v1  ṽ
<latexit sha1_base64="T+E4/eJEpjvYpsdGS/Pum0B72n4=">AAAB+3icbVDJSgNBEK2JW4zbGMGLl8YgeAozXvQY9OIxAbNAMow9nUrSpGexuycYhvyKFw+KePVHvHnxW+wsB018UPB4r4qqekEiuNKO82Xl1tY3Nrfy24Wd3b39A/uw2FBxKhnWWSxi2QqoQsEjrGuuBbYSiTQMBDaD4c3Ub45QKh5Hd3qcoBfSfsR7nFFtJN8ujnyXdAQ+kI7moovZaOLbJafszEBWibsgpcpx7fseAKq+/dnpxiwNMdJMUKXarpNoL6NScyZwUuikChPKhrSPbUMjGqLystntE3JmlC7pxdJUpMlM/T2R0VCpcRiYzpDqgVr2puJ/XjvVvSsv41GSaozYfFEvFUTHZBoE6XKJTIuxIZRJbm4lbEAlZdrEVTAhuMsvr5LGRdl1ym7NLVWuYY48nMApnIMLl1CBW6hCHRg8whO8wKs1sZ6tN+t93pqzFjNH8AfWxw8a5JYB</latexit><latexit sha1_base64="I+n+x5GvACa2CFRiyaFkQCxV+wY=">AAAB+3icbVDLSsNAFJ3UV62vWMGNm8EiuCqJG12WunHZgn1AE8pkctMOnTycmRRLyK+4caGILv0Dv8CdG7/F6WOhrQcuHM65l3vv8RLOpLKsL6Owtr6xuVXcLu3s7u0fmIfltoxTQaFFYx6LrkckcBZBSzHFoZsIIKHHoeONrqd+ZwxCsji6VZME3JAMIhYwSpSW+mZ53Lexw+EOO4pxH7Jx3jcrVtWaAa8Se0EqtePmN3urfzT65qfjxzQNIVKUEyl7tpUoNyNCMcohLzmphITQERlAT9OIhCDdbHZ7js+04uMgFroihWfq74mMhFJOQk93hkQN5bI3Ff/zeqkKrtyMRUmqIKLzRUHKsYrxNAjsMwFU8YkmhAqmb8V0SAShSsdV0iHYyy+vkvZF1baqdtOu1OpojiI6QafoHNnoEtXQDWqgFqLoHj2gJ/Rs5Maj8WK8zlsLxmLmCP2B8f4DbCWXvQ==</latexit><latexit sha1_base64="I+n+x5GvACa2CFRiyaFkQCxV+wY=">AAAB+3icbVDLSsNAFJ3UV62vWMGNm8EiuCqJG12WunHZgn1AE8pkctMOnTycmRRLyK+4caGILv0Dv8CdG7/F6WOhrQcuHM65l3vv8RLOpLKsL6Owtr6xuVXcLu3s7u0fmIfltoxTQaFFYx6LrkckcBZBSzHFoZsIIKHHoeONrqd+ZwxCsji6VZME3JAMIhYwSpSW+mZ53Lexw+EOO4pxH7Jx3jcrVtWaAa8Se0EqtePmN3urfzT65qfjxzQNIVKUEyl7tpUoNyNCMcohLzmphITQERlAT9OIhCDdbHZ7js+04uMgFroihWfq74mMhFJOQk93hkQN5bI3Ff/zeqkKrtyMRUmqIKLzRUHKsYrxNAjsMwFU8YkmhAqmb8V0SAShSsdV0iHYyy+vkvZF1baqdtOu1OpojiI6QafoHNnoEtXQDWqgFqLoHj2gJ/Rs5Maj8WK8zlsLxmLmCP2B8f4DbCWXvQ==</latexit><latexit sha1_base64="Bp+bImRS2UUH1IqlvjT40QakJRs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5J40WPRi8cK9gPaEDabSbt0s4m7m2IJ+StePCji1T/izX/jts1BWx8MPN6bYWZekHKmtON8W5WNza3tnepubW//4PDIPq53VZJJCh2a8ET2A6KAMwEdzTSHfiqBxAGHXjC5nfu9KUjFEvGgZyl4MRkJFjFKtJF8uz71XTzk8IiHmvEQ8mnh2w2n6SyA14lbkgYq0fbtr2GY0CwGoSknSg1cJ9VeTqRmlENRG2YKUkInZAQDQwWJQXn54vYCnxslxFEiTQmNF+rviZzESs3iwHTGRI/VqjcX//MGmY6uvZyJNNMg6HJRlHGsEzwPAodMAtV8ZgihkplbMR0TSag2cdVMCO7qy+uke9l0naZ77zZaN2UcVXSKztAFctEVaqE71EYdRNETekav6M0qrBfr3fpYtlascuYE/YH1+QOMPZQc</latexit>

S(v1)
<latexit sha1_base64="HE4HOGFfPkfwex3dmtOBaoHy1+A=">AAAB7XicbZDLSgMxFIbP1Futt6pLN6FFqAhl4kaXRTcuK9oLtEPJpGkbm0mGJFMoQ9/BjQtFxJ3v4863Mb0stPWHwMf/n0POOWEsuLG+/+1l1tY3Nrey27md3b39g/zhUd2oRFNWo0oo3QyJYYJLVrPcCtaMNSNRKFgjHN5M88aIacOVfLDjmAUR6Uve45RYZ9XvS6MOPuvki37ZnwmtAl5AsVJon38AQLWT/2p3FU0iJi0VxJgW9mMbpERbTgWb5NqJYTGhQ9JnLYeSRMwE6WzaCTp1Thf1lHZPWjRzf3ekJDJmHIWuMiJ2YJazqflf1kps7ypIuYwTyySdf9RLBLIKTVdHXa4ZtWLsgFDN3ayIDogm1LoD5dwR8PLKq1C/KGO/jO9wsXINc2XhBApQAgyXUIFbqEINKDzCE7zAq6e8Z+/Ne5+XZrxFzzH8kff5A4TVj+Y=</latexit><latexit sha1_base64="CxYn4HQsrUTzLWMoUi8FOtDliA8=">AAAB7XicbZDLSgMxFIbPeK31VnXpJrQIFaFM3Ohy0I3LivYC7VAyadrGZiZDkikMQ9/BhS4Ucev7uOvbmF4W2vpD4OP/zyHnnCAWXBvXnThr6xubW9u5nfzu3v7BYeHouK5loiirUSmkagZEM8EjVjPcCNaMFSNhIFgjGN5O88aIKc1l9GjSmPkh6Ue8xykx1qo/lEcdfN4plNyKOxNaBbyAkldsX7xMvLTaKXy3u5ImIYsMFUTrFnZj42dEGU4FG+fbiWYxoUPSZy2LEQmZ9rPZtGN0Zp0u6kllX2TQzP3dkZFQ6zQMbGVIzEAvZ1Pzv6yVmN61n/EoTgyL6PyjXiKQkWi6OupyxagRqQVCFbezIjogilBjD5S3R8DLK69C/bKC3Qq+xyXvBubKwSkUoQwYrsCDO6hCDSg8wTO8wbsjnVfnw/mcl645i54T+CPn6weOP5Fs</latexit><latexit sha1_base64="CxYn4HQsrUTzLWMoUi8FOtDliA8=">AAAB7XicbZDLSgMxFIbPeK31VnXpJrQIFaFM3Ohy0I3LivYC7VAyadrGZiZDkikMQ9/BhS4Ucev7uOvbmF4W2vpD4OP/zyHnnCAWXBvXnThr6xubW9u5nfzu3v7BYeHouK5loiirUSmkagZEM8EjVjPcCNaMFSNhIFgjGN5O88aIKc1l9GjSmPkh6Ue8xykx1qo/lEcdfN4plNyKOxNaBbyAkldsX7xMvLTaKXy3u5ImIYsMFUTrFnZj42dEGU4FG+fbiWYxoUPSZy2LEQmZ9rPZtGN0Zp0u6kllX2TQzP3dkZFQ6zQMbGVIzEAvZ1Pzv6yVmN61n/EoTgyL6PyjXiKQkWi6OupyxagRqQVCFbezIjogilBjD5S3R8DLK69C/bKC3Qq+xyXvBubKwSkUoQwYrsCDO6hCDSg8wTO8wbsjnVfnw/mcl645i54T+CPn6weOP5Fs</latexit><latexit sha1_base64="VaCjuGTmzVZ1OeOSDSBqrOaDh/s=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7L1okeiF48YBUlgQ7qlC5Vuu2m7JGTDf/DiQWO8+n+8+W8ssAcFXzLJy3szmZkXJoIb6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNLtkBgmuGRNy61g7UQzEoeCPYajm5n/OGbacCUf7CRhQUwGkkecEuuk1n113MPnvXLFr/lzoFWCc1KBHI1e+avbVzSNmbRUEGM62E9skBFtORVsWuqmhiWEjsiAdRyVJGYmyObXTtGZU/ooUtqVtGiu/p7ISGzMJA5dZ0zs0Cx7M/E/r5Pa6CrIuExSyyRdLIpSgaxCs9dRn2tGrZg4Qqjm7lZEh0QTal1AJRcCXn55lbQuativ4TtcqV/ncRThBE6hChguoQ630IAmUHiCZ3iFN095L96797FoLXj5zDH8gff5A3JWjl0=</latexit>

Figure 2: Decision tree

such that S (ṽ) = a0. We can use this information to illustrate the tree of the

game in Figure 2.

Figure 2 depicts the choices made by the agent in the two-period game. The

top branch represents the case where there is no opportunity for revising the

first-period choice, so a0 is the final action. In the second branch, the player

would like to choose final action a < a0, but due to the irreversibility condition

the final choice is kept at a0. Note that the highest value of v1 that belongs to

this branch is equal to ṽ, which, as defined, has the property that S (ṽ) = a0.

The bottom and third branches represent values above ṽ where the player will

increase the action in the second period to S(v1).

Considering the best response in the second period, the choice of a0 maximizes

EUi = (1− p)U (E(v1|v0), a0)

+ p

ˆ ṽ

U (v1, a0) dF (v1|v0) + p

ˆ ∞
ṽ

U (v1, S (v1)) dF (v1|v0) .

Assuming that G is differentiable, using the envelope theorem, the associated

nience. The set of assumptions that are needed for our main results are given in Sections 3
and 4.
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first-order condition simplifies to

(1− p) [G′ (a0)E (v1|v0)− 1] + p

ˆ ṽ(a0)

[G′ (a0) v1 − 1] dF (v1|v0) = 0. (2)

Since S (ṽ) = a0, the second-period first-order condition G′ (a0) ṽ−1 = 0 holds

too. Substituting for G′ (a0) in (2) gives

(1− p)
[
E (v1|v0)

ṽ
− 1

]
+ p

ˆ ṽ [v1

ṽ
− 1
]
dF (v1|v0) = 0. (3)

This equation defines implicitly ṽ as a function of v0 only, independently of

the other players’ strategies. It can be more conveniently rewritten as

ṽ =
(1− p)E(v1|v0) + p

´ ṽ
v1dF (v1|v0)

(1− p) + pF (ṽ|v0)
. (4)

We call this value ṽ, the equivalent final value of v0. The agent makes the

same choice in the first period when the agent’s value is v0 as if it were in the

final period confronted with value ṽ.

To interpret this relationship, note that the threshold ṽ defines a lottery over

final values v under which a0 will also be the final action of the agent, com-

prising the following events:

1. The agent does not have an opportunity to revise its first-period choice.

This event has probability (1− p) and expected value E (v1|v0) .

2. The agent is able to revise its first-period choice but its final value is less

than the threshold ṽ, so the agent would maintain its initial choice. This

event has probability pF (ṽ) and expected value
´ ṽ v1dF (v1|v0)

F (ṽ)
.

The lottery over these final values has an expected value as given in equation 4,

which is equal to ṽ. This is the key property defining the equivalent final value

and it holds under a wide class of payoff functions. Let u (v, ai, a−i) denote

the final payoff to agent i when its final value is v and vector of final actions

10



(ai, a−i) . Assume the expected utility is linear in v and (strictly) supermodular

in v, ai. The former guarantees that Evu (v, ai, a−i) = u (Evv, ai, a−i), and the

latter guarantees that the optimal choice ai is a strictly increasing function

of v. These two properties are preserved when integrating out the actions of

other players with respect to any distribution G (a−i). As before, let

S (v) = argmax Ea−i
U(v, ai, a−i)

denote the optimal strategy for agent i in the final period when faced with a

distribution G−i for the strategies of the other players, and let (v0, a0) denote

the value and optimal strategy of a player in the first period. Given a0, the

optimal threshold ṽ for increasing this action in the second period will be such

that

S (ṽ) = a0. (5)

The threshold also defines a lottery over final values v under which a0 will be

the final action of the agent, comprised of the two sets of events defined above,

with expected value

(1− p)E (v1|v0) + pF (ṽ)
´ ṽ v1dF (v1|v0)

F (ṽ)

1− p+ pF (ṽ)
.

Because of the linearity of payoffs in v,

a0 = S

(
(1− p)E (v1|v0) + p

´ ṽ
v1dF (v1|v0)

1− p+ pF (ṽ)

)
. (6)

Using (5) and (6) and given that B is strictly increasing, we get to the same

relationship as the one in equation 3. Therefore, mapping between equivalent

final value ṽ and the initial value v0 is independent of the specific strategy

function S and thus the underlying payoff function U and the distribution of

other players’ actions.

As suggested in the example, the partition of the space of values into expected-

value equivalent pairs (v0, ṽ) can be used to reduce the dynamic game to
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an equivalent static one. Starting with an initial distribution F0 (v0) and a

conditional distribution F (v1|v0), we can construct a new distribution of final

values as follows. For any initial v0, assign a value ṽ (v0) to the histories

where either the corresponding agent does not have a revision opportunity in

the second period or gets a value v1 ≤ ṽ. In the complement (i.e., histories

where the agent can review its choice and v1 > ṽ), set the final value equal to

v1. Assigning the corresponding probabilities for these histories as determined

from F0, F , and the review probability p defines a distribution for final values

F̃ for each player and thus a static Bayesian game. Letting S̃ denote an

equilibrium strategy for the agent in that game, we can now assign a0 (v0) =

S̃ (ṽ (v0)) and a (v0, v1) = max
{
a0 (v0) , S̃ (v1)

}
as equilibrium strategies in

the dynamic game.

We now consider a key property of equilibria in this class of games. The

opportunity of modifying the action in the future introduces an option. From

equation (4) it follows immediately that ṽ < E (v1|v0), so the agent in the

first period acts as if the final value were lower than the agent’s conditional

expectation; this is what we call value shading. The fact that actions are

monotonic in values also results in the shading of actions below the optimal

ones. This becomes more severe as the probability p increases, and in the

limit when p→ 1, F (ṽ|v0)→ 0, i.e., the agent acts in the first period as if the

value were the lowest in the support. In the other extreme, when p→ 0, ṽ =

E (v1|v0), so there is no shading. The intuition for these results goes back to our

description of the two sets of events where the action chosen in the first period

is the final one. The first event, when the agent has no future opportunity of

increasing its initial action, has expected value E (v1|v0). It is the second event,

where the agent has this opportunity but chooses not to increase its initial

action, that is responsible for shading. Thus, the irreversibility of actions and

the opportunity for delay create a negative option value in the first period.

This value can also be interpreted as adverse selection against the agent’s

future self which is responsible for value shading.

12



3 The Decision Problem

We first consider the general structure of a dynamic decision problem. Then

we show that it can be embedded in a wide class of dynamic games as well.

Time is continuous in the interval [0, T ] . Decision times τ0, τ1, ... are random

according to a process that is detailed below. At these decision times the agent

can choose an action aτ (e.g., capital) from a totally ordered set A, with the

restriction that for τ ′ > τ, aτ ′ ≥ aτ. This restriction captures the irreversible

nature of actions. Letting aT denote the final action, payoffs are given by a

function U (vT , aT ), where vT is a bounded real valued random variable in a

probability space (Ω,F ,Π).

Assumption 1. The payoff function U (v, a) is linear in a monotone function

of v, supermodular in v and a, and admits a maximum with respect to a for

all v.

Information arrival and decision times are modeled as joint stochastic processes

on [0, T ] as follows. Decision times are given by sequences of stopping times

{τn (ω)}, where τn+1 (ω) > τn (ω). Information arrival is modeled by a stochas-

tic process ṽ (t, ω) of signals with the property that E (vT |ṽ (t, ω) = v) = v.

More formally, let {Ft}0≤t≤T be a filtration representing information available

at time t, i.e., increasing σ−algebras on Ω with the property that Ft ⊂ Ft+s ⊂
F . As in the case of a Poisson process, the stopping times {τn (ω)} are mod-

eled as the jumps of a right continuous counting process {η (t, ω)}. Without

loss of generality, we assume that {Ft} is the filtration generated by the pair of

stochastic processes {η (t, ω) , ṽ (t, ω)} so that the realization of these processes

is all the information available at time t and E (vT |Ft) = ṽ (t, ω) .

Since information arrivals are relevant only at decision nodes, we restrict atten-

tion to the joint process {vn, τn} where vn (ω) = v (τn (ω) , ω), i.e., the process

v (t, ω) subordinated to the arrival process η (t, ω) . We make the following

assumption about this process.
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Assumption 2. Assume that {vn, τn} follows a joint Markov process, i.e.,

P (vn+1 = v′, τn+1 = τ ′|Fτn) = P (vn+1 = v′, τn+1 = τ ′|vn, τn) .

By assuming that values and decision times are Markov, we can identify de-

cision nodes with pairs (vn, τn) corresponding to the realized signal and time

in the last arrival. A decision strategy s specifies at each possible decision

node a desired action s (vn, τn), which is the choice the agent would make

if unconstrained by past actions. Given that actions can only be increased,

a (s, t) = max {s (vn, τn) |τn ≤ t} is the choice that prevails at time t and, in

particular, a (s, T ) is the final choice. Let S denote the set of strategies satis-

fying these conditions.

While decision times are exogenous, our specification is flexible; in particu-

lar, it allows for decision times and expected values to be correlated. This

specification could capture, for example, a situation where an agent might be

more eager to revise its strategy when there is a large information update, or,

likewise, the agent might be more attentive when the expected value is high.

Moreover, the inclusion of time as a state variable allows for a non-stationary

Markov process in values.

Given a strategy s ∈ S, for each realized path ω we can associate a value

U (v (T, ω) , a (s, T, ω)), where a (s, T, ω) = sup {s (vn (ω) , τn (ω)) |τn ≤ T}. An

optimal decision strategy solves

sup
s∈S

E0U (v (T ) , a (s, T )) . (7)

In Section 4 we provide conditions such that there exists an optimal solution to

(7) and develop our method that maps this dynamic problem into an equivalent

static one. This method is what makes our structure tractable, facilitating

estimation and the analysis of dynamic games. Before getting to the formal

analysis, we provide a series of examples that suggest the range of applications

of this setup.
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3.1 Examples

This general setting embeds various interesting applications of dynamic de-

cision problems. As explained in Section 4.3, under certain conditions, this

general setting can be extended to dynamic games as well. Some examples are

given below.

Irreversible Investment At random times τ an agent faces an investment

opportunity and chooses it ≥ 0 after observing a signal vt of the final value vT .

The final expected payoff is vTR (kT ) − C (kT ) , where kT is final cumulative

investment, R is total revenue, and C is total cost of investment. This is a

direct application of the framework above. It can also be extended to a game

where final payoffs depend on total investment kT of this player and also on

the total investment of others.

General Contest and Teamwork The example in Section 2 can be easily

generalized. The contest takes place in the interval of time [0, T ]. Agents can

exert effort e ≥ 0 at random times τ when getting signals vτ of the final value

viT . Letting a1, ..., aN denote the final cumulative effort of all players, final

payoffs have the form Ui (viT , ai, a−i) satisfying Assumption 1. For example,

prizes could depend on the ranking of final efforts as in Moldovanu and Sela

[2001]. In the case of a team, the functions Ui could be the result of a com-

pensation scheme that depends on a set of signals observed by a principal that

are correlated with the vector of final effort choices.

Sequential Trading Commitments At random times, the decision maker

is faced with the opportunity of selling at a given price pτ a quantity of choice

qτ to be delivered at the end of the period. Both arrival time and price

are random, following a joint Markov process. Final payoffs are
∑

τ pτqτ −
C (Q), where Q =

∑
τ qτ and C is a strictly increasing and convex function.

As an example, a utility company might face opportunities to sell forward

electricity delivery contracts as in Ito and Reguant [2016]. The expected cost
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of committing to a larger volume might be convex as more costly energy sources

need to be used to fulfill the contracts. Or, a financial trader could sell future

contracts that will be fulfilled by resorting to its network of intermediaries,

forcing the trader to use more expensive sources in case larger quantities are

needed.

While cash flows in the above setting accrue throughout the decision period,

the problem can be mapped into the general setting where a payoff ptq received

at time t is equivalent to a random final payoff pT q when pt follows a martingale

so that Et (pT |pt) = pt. Letting v = p, a = Q, and U (v, a) = va− C (a) gives

the corresponding final payoff function, which is linear in v and supermodular,

as required. Alternatively, a monopolist retailer might face random opportu-

nities to buy inventory qt that will be sold at a final time period at revenue

u (
∑

τ qτ ). Letting qt represent negative quantities (interpreted as purchases)

and C (Q) = −u (Q) gives the same payoff function as before.7

Procrastination in Effort Choice At random times τ an agent chooses

effort aτ at cost cτaτ . Final payoffs are given by u (
∑
aτ ) −

∑
cτaτ , where u

is increasing and concave. Procrastination occurs as an agent might put lower

effort in anticipation of the possibility of lower future cost. As a final time T is

approached, the incentives for procrastination will decrease. In this example

payoffs accrue over time but they can be mapped to final payoffs as in the

previous one. This setting can also be embedded in a game where final payoffs

depend on the vector of cumulative actions of all players.

Entry Decisions and Search At random times τ , the decision maker gets

an opportunity to enter a market and a signal vτ about the expected value

of entry. Entry must take place before time T. Final payoffs are vT − c if

the decision maker enters the market and zero otherwise. In this application

7These results extend to the case where pt is not a martingale. This is done by back-
loading payoffs as above and redefining payoffs in those histories where there are no further
arrivals to pick up the difference E (vT |v)− v. Details of this procedure are available upon
request.
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the action space is A = {0, 1}, representing the choice of no entry and entry,

respectively. This application can be easily inscribed in an entry game.

Likewise, consider a search environment where an agent must make a decision

prior to time T. New offers arrive at random times τ with a value vτ . The agent

may take this offer or continue searching. Assume, as in the standard search

environment, that vτ is sampled from a fixed distribution. Using the method

described in the Sequential Trading Commitments example, this problem can

be mapped into the structure of our modeling framework. The action space is

also {0, 1} as in the previous example.

Bidding in Long Auctions In Hopenhayn and Saeedi [2020], we consider

a model where a bidder’s value can change over time, capturing the idea that

preferences for the object or outside opportunities might change. The bid-

der can only increase bids over time and there is no retraction of past bids.

Examples of these auctions are eBay and GovDeals.8 In these auctions, bid-

ders frequently place multiple bids over time and increase them as the auction

progresses. To model these auctions in the above class of decision problems,

suppose that at random times τ and with an expected final value v, the agent

can place (or increase) a bid bτ . The final expected payoff in the auction will

depend on the final value vT , the final bid bT of this bidder, and those of

others. Integrating over the bids of others, the expected final value has the

form [vT − E (b2|b2 ≤ bT )]Prob (bT is the highest bid). This expected payoff is

linear in vT and supermodular, as required in our general decision problem.

This application is examined in more detail in Section 6.

Time Separable Payoffs with Discounting A decision maker has payoffs

u (v, a) that are received over time and has a constant discount factor β. Time

is discrete, and at each point in time payoffs are functions of a random value

vt and an action at as given by function u (vt, at). A decision maker chooses a

8GovDeals is an auction platform used by government agencies to sell used equipment.
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sequence of non-decreasing and contingent actions at to maximize

max
{atincreasing}

T∑
t=0

βtEu (vt, at) ,

where we assume u (v, a) is linear in v and supermodular. The restriction to

increasing actions could capture, for instance, returns from irreversible past

investments or cumulative R&D. While this problem does not fit directly in

our setting, we exploit time separability of payoffs to provide an equivalent

formulation that does so. This is done by treating all payoffs as final with

appropriately defined weights. We consider here the case where T = ∞, but

this case is easily extended to finite or even random T. Let B = 1
1−β and define

U (v, a) = Bu (v, a) . Let P (t+ 1|t) = β and P (t′|t) = 0 for all t′ > t + 1. As

of time zero this implies that the probability of no arrivals is (1− β), and that

of only n arrivals, (1− β) βn . Expected final value at time zero is

(1− β) v0 + β (1− β)Ev1 + (1− β) β2Ev2 + ....

The corresponding final actions are a0, a1, .... and

E (U (v, a)) = (1− β)EU (v0, a0) + (1− β) βEU (v1, a1) + ...+ (1− β) βtEU (vt, at)

=
T∑
t=0

βtEu (vt, at) ,

so this transformation respects the original payoff structure. While we con-

sider here time zero payoffs, the same procedure applies to any future period.

This formulation easily extends to random arrivals and a structure where ar-

rivals and payoffs follow a general joint Markov process. Linear investment

costs of the form it = at − at−1, as would occur in the case of irreversible

investment, can be easily accommodated in the above payoff function through

the rearrangement and collection of the different at terms. An application of

time separability to an anonymous sequential game is provided in Section 6.2.
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4 Main Results

In this section, we first provide an intuitive analysis of our main findings. Next,

we go through the more formal analysis with stating the main theorems. We

also show how our analysis for the optimal decision problem can be extended

to a large class of dynamic games. The key insight is that we identify a

distribution of valuations for each player that is independent of the game and

opponents’ valuations and strategies. Then we show that the equilibria of

the dynamic game correspond one-to-one to the equilibria of a static game

with respect to this distribution of values. Finally, we consider the dynamic

properties of value shading.

4.1 Intuitive Analysis

The example in Section 2 identified initial values v0 with a threshold ṽ with

the property that for any game or decision problem with payoffs that satisfy

the given assumptions, the initial action chosen at v0 equals the optimal final

choice at this threshold. This defined a partition of initial and final values

into equivalent classes. In the general model where t ∈ [0, T ], a similar repre-

sentation can be obtained. We can partition the set of value and time pairs

(v, t) into indifference classes that can be identified by a final value ṽ which we

denote by e (v, t) . These have the property that optimal actions are identical

for all pairs in an indifference class, as depicted in Figure 1. Moreover, our

assumption of supermodularity of payoffs ensures that optimal actions are in-

creasing in the final equivalent value, i.e., in the northeast direction in Figure

1.

These indifference curves can be used to define an agent’s optimal strategy over

time and in particular the final action chosen. This is illustrated in Figure 3.

In the paths shown, the first decision node is (v0, t0) where the agent chooses an

action a0. This is also the final action in the first two panels, where either the

agent has no opportunity for future actions or is faced with this opportunity

at a decision node (v1, t1) in a lower indifference curve. The last two panels of
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<latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit>

v

v0

tt0 Tt1

ṽ
<latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit>

a0
<latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit>

a1
<latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit><latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit><latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit><latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit>

v

v0

tt0 Tt1 t2

ṽ
<latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit>

a0
<latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit>
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Figure 3: Indifference curves and increasing actions

Note: The dotted line represents changes in the valuation of the agent, and the red solid
lines represent the indifference curves. In the top left graph, the agent does not get a chance
of changing its action. In the top right graph, the agent gets a second chance to update
its action but chooses not to increase it. In the bottom two graphs, the agent increases
its action after getting a chance to do so at a decision node above the agent’s original
indifference curve.
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Figure 3 represent cases where the agent gets a chance of updating its action at

a time period in which the agent’s valuation is above the original indifference

curve. In these two cases, the agent chooses a higher action, so the choice made

at decision node (v0, t0) no longer binds. More generally, for any path with

decision nodes {(v0, t0) , (v1, t1) , ..., (vn, tn)} the final action is the one that is

optimal for a value equal to max {e (v0, t0) , e (v1, t1) , ..., e (vn, tn)} , i.e., the

value associated to the highest indifference curve reached during the decision

times t0, ..., tn.

This procedure can be formalized as follows. In our example, the threshold ṽ

was defined by the following property:

E (v1|no decision opportunity with v1 > ṽ) = ṽ,

i.e., the expected value for all realizations where the action chosen in the first

period remains the final one. Similarly, e (v0, t0) is the expected final value

vT on the set of all paths following (v0, t0) such that all subsequent decision

nodes lie below the indifference curve corresponding to (v0, t0) or there is no

subsequent decision node. This is the case in the top two panels in Figure 3

but not the last two panels.

An optimal decision strategy is derived as follows. Let

S̃ (v) = argmax U (v, a) (8)

denote the solution to the static optimization problem for any value v. Then

the optimal decision strategy at decision node (v, t) is given by S̃ (e (v, t)).9

4.2 Formal Analysis

Here we state our main results that formalize the intuitive arguments given

above and provide a sketch of the proof of our main theorem, while the com-

plete proofs can be found in the appendix. Our analysis in the previous section

9If the maximum is not unique, S̃ is an increasing selection.
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suggests a general approach to finding the solution to our decision problem.

The steps to this proof are as follows:

1. Define a function e (v, t) that partitions the set of states into indifference

equivalent final value classes as above. We show that the function is

uniquely defined and can be obtained via solving a dynamic program-

ming problem.

2. Define a candidate-optimal decision strategy at decision node (v, t) as

choosing the action S̃ (e (v, t)), where S̃ (· ) is the function defined by

equation 8, and prove that this is an optimal decision strategy for the

dynamic problem.

Let D (ω) denote the decision nodes (v, t) for path ω ∈ Ω and N (v, t) denote

the set of paths ω ∈ Ω such that there are no arrivals after (v, t), i.e.,

N (v, t) = {ω ∈ Ω| (v, t) ∈ D (ω) and @ (v′, t′) ∈ D (ω) ∀ t′ > t} . (9)

Let Π (ω|v, t) denote the conditional probability of ω given (v, t) ∈ D (ω). The

following assumptions are used throughout the paper.

Assumption 3. The following properties hold:

1. ∃δ > 0 such that Π (N (v, t) |v, t) > δ for all (v, t),

2.
´
N(v,t)

(vT (ω)) dΠ (ω|v, t) is continuous in v, t, and

3. P (v′, t′|v, t) is continuous in the topology of weak convergence.

The first assumption states there is positive probability bounded away from

zero that the current decision node is the last one. The last two assumptions

are standard continuity requirements on the stochastic process for signals. In

particular, in case arrival times and values are independent
´
N(v,t)

(vT (ω)) dΠ (ω|v, t) =

vΠ (N (v, t) |v, t), so the second condition states that the probability of a next

arrival before T is a continuous function of t. This is satisfied for example in

the Poisson arrival case where Π (N (v, t)) = exp (−λ (T − t)), with the arrival

rate λ.
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4.2.1 Self-Generated Expectation

Consider a real-valued (Borel) measurable function e (v, t). For ω ∈ Ω, an

element of the underlying probability space and 0 ≤ t ≤ T, if there is any

arrival after t, define

ē (t, ω) = max {e (v′, t′) | (v′, t′) ∈ D (ω) and t′ > t} ,

where, as defined earlier, D (ω) is the set of all decision nodes for a given ω.

If the above set is empty, set ē (t, ω) to an arbitrarily low number.10 For every

state (v, t) such that 0 ≤ t ≤ T , letH (ε, v, t) = {ω| (v, t) ∈ D (ω) and ē (t, ω)≤ ε}.11

Definition. The function e (v, t) is a self-generated expectation (SGE) for the

process defined by transition function P if it satisfies the following property for

all (v, t):

e (v, t) = EH(e(v,t),v,t)vT . (10)

The above definition is equivalent to the following:

ˆ
H(e(v,t),v,t)

(vT (ω)− e (v, t)) dΠ (ω|v, t) = 0. (11)

Given a self-generated expectation function e (v, t), we can define iso-expectation

level curves I (u) = {(v, t) |e (v, t) = u} . Intuitively, the level u indicates the

conditional expectation of the final value of all paths, starting from a given

state in I (u), that never cross above this iso-expectation curve at a future

decision node. These are the indifference curves described in the previous

section.

The derivation of a self-generated expectation follows a recursive structure.

First note that e (v, T ) = v, since this is a terminal node. Intuitively, working

10For example, set it equal to inf e (v, t) .
11Note that this definition is a given e(v, t) function. To simplify the notation, we have

suppressed this term from an argument of the function H.
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backwards from that point using (10) should give a unique self-generated ex-

pectation e (v, t). While (10) seems like a complicated functional equation, we

can find the solution by considering the following auxiliary functional equation:

W (ε, v, t) =

ˆ T

t
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
(12)

+

ˆ
N(v,t)

(vT (ω)− ε) dΠ (ω|v, t)

and W (ε, v, T ) = v − ε.

Proposition 1. Given Assumption 3, the function e (v, t) defined implicitly

by W (e (v, t) , v, t) = 0 exists and is the unique self-generated expectation for

the process defined by transition function P .

Here we give an overview of the steps involved. The first step consists in

showing that using any self-generated expectation function we can construct

a function W that satisfies functional equation (12) and the condition that

W (e (v, t) , v, t) = 0. Then we show that by Assumption 3 the functional

equation (12) is a contraction mapping, so it has a unique solution. It also

follows easily that this function is strictly decreasing in ε and continuous.

Moreover, it is greater than or equal to zero when ε = 0 and negative for

large ε. It follows by the intermediate value theorem that there is a unique

value e (v, t) such that W (e (v, t) , v, t) = 0. We finally show that this solution

satisfies 10.

4.2.2 The Optimal Solution

Consider the problem

max
a
U (v, a) .

Let S̃ (v) be a (weakly) increasing selection of the set of maximizers, which is

guaranteed to exist by Assumption 1. This strategy gives an optimal action

for the agent if it were choosing at time T with a value vT = v.
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Theorem 1. For any payoff function U (v, a) satisfying Assumption 1 and

Markov process P (v, t) satisfying Assumption 3, the strategy defined by S (v, t) =

S̃ (e (v, t)) is an optimal strategy for the dynamic decision problem 7, where the

function e (v, t) is the self-generated expectation corresponding to process P.

We provide an intuitive argument here. Take this strategy S for all t′ > t

and consider the choice of action a in state (v, t). Let H̄ (a, v, t) denote all

paths ω ∈ Ω following (v, t) such that either there are no more future decision

nodes or S (vm, τm) ≤ a for all decision nodes that follow. Using the candidate

strategy function for future states, S (vm, τm) ≤ a corresponds to states where

S̃ (e (vm, τm)) ≤ a. Let a (T, ω) denote the final action when applying this

strategy in the future, so a (T, ω) = a for ω ∈ H̄ (a, v, t) and is greater than a

in the complement. It follows that the expected value of choosing a in (v, t)

followed by this strategy function equals

V (v, t, a, S) =

ˆ
H̄(a,v,t)

U (v (T ) , a) dΠ (ω|v, t)+
ˆ
H̄(a,v,t)c

U (v (T ) , a (T, ω)) dΠ (ω|v, t) .

First, note that the boundary of the set H̄ (a, v, t) (and H̄ (a, v, t)c) consists

of all those paths starting from (v, t) for which the final action a (T ) is equal

to a. For the purpose of providing a heuristic argument, assume U (v, a)

is differentiable in a.12 So, given the envelope condition, when considering

the derivative of the above, we can ignore the effect of the change in the

supports of the two integrals. The first-order condition is then ∂V/∂a =
∂
∂a

´
H̄(a,v,t)

U (v (T ) , a) dΠ (ω|v, t) = 0. By Assumption 1 (linearity in v), this

is equivalent to the condition

∂

∂a
U
(
EH̄(a,v,t)v (T ) , a

)
Π
(
H̄ (a, v, t) |v, t

)
= 0, (13)

so the optimal action satisfies a = S̃
(
EH̄(a,v,t)v (T )

)
. It only remains to show

that EH̄(a,v,t)v (T ) = e (v, t) . When a = S̃ (e (v, t)), this follows easily; the set

H̄ (a, v, t) is exactly the set such that for all future decision nodes e (vm, τm) ≤
12In the formal proof we do not assume differentiability.
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e (v, t) . Otherwise, suppose some other a satisfies equation (13); then for

all future values where S (v′, τ ′) = a, it must be the case that e (v′, τ ′) =

EH̄(a,v,t)v (T ). It then follows from the definition of a self-generating expec-

tation that e (v, t) = EH̄(a,v,t)v (T ) . Since by Theorem 1, there is a unique

self-generating expectation, the optimal action is uniquely determined by the

condition given in Proposition 1.

4.3 Embedding in Games

As our leading example suggests, our results for decision problems can be ex-

tended to a class of games of incomplete information. Fixing the strategies

of the other players, the choice of a best response is a decision problem that

falls within the class discussed above. This best response can be found by

maximizing expected payoffs at equivalent final values, as defined above. In

contrast to our above decision problem, the vector of strategies has the ad-

ditional restriction that the strategies must conform an equilibrium, i.e., be

mutually best responses. We define a static Bayesian game where the distribu-

tion for each player’s type is the distribution of the equivalent final values for

that player, and strategies map these values into their corresponding action

sets. Finally, we establish that any equilibrium of this static Bayesian game

defines equilibrium strategies for all players in the original game.

Define a game Γ=
(
I, {Ai}i∈I , {Zi}i∈I , {Pi}i∈I , {uiT}i∈I

)
as follows. There is

a fixed set of players I = {1, ..., N} . Each player faces a process for val-

ues v ∈ Zi and decision times in [0, T ] with Markov transition Pi (v, t) that

are independent across players. Final payoffs are given by utility functions

uiT (viT , aiT , a−iT ), where viT is the vector of final values for player i and

(aiT , a−iT ) is the vector of final actions coming from totally ordered setsA1, ..., AN .

We assume that information sets for each player contain only their own his-

tories, and as a result strategies Si : Zi × [0, T ] → Ai for each player specify

choices of actions as a function of these histories, and without loss of gener-

ality we can restrict to Markov strategies Si (v, t) . Let Si denote the set of

strategies. Let ui (Si, S−i) = E0uiT (viT , aiT , a−iT |Si, S−i).
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Definition 1. An equilibrium for game Γ=
(
I, {Ai}i∈I , {Zi}i∈I , {Pi}i∈I , {ui}i∈I

)
is a vector of functions Si : Zi × [0, T ] → Ai such that for all i ui (Si, S−i) ≥
ui (S

′
i, S−i) for all S ′i ∈ Si.

Finding the Nash equilibria of this game seems a formidable task, given the

high dimensionality of the strategy space. In what follows we show how this

problem can be reduced to solving for the one-dimensional strategies that

specify the actions for each player in a static Bayesian game.

Consider player i. For every history ω, we can identify a unique value corre-

sponding to the highest final equivalent value reached, vi (ω) = max {ei (vn (ω) , τn (ω))},
for the corresponding path. This procedure determines uniquely a distribu-

tion Ψi of equivalent final values for this player that depends only on the

corresponding Markov process Pi for decision nodes (v, t). Define the (static)

Bayesian game as follows: set of players I = {1, ..., N} , distribution of val-

ues for each player Ψ1, ...,ΨN , strategy sets A1, ..., AN , and payoff function

uiT (vi, ai, a−i).

Definition 2. ΓB =
(
I, {Ψi}i∈I , {Ai}i∈I , {uiT}i∈I

)
is the static Bayesian

game associated to dynamic Bayesian game Γ =
(
I, {Ai}i∈I , {Zi}i∈I , {Pi}i∈I , {ui}i∈I

)
.

Assumption 4. Assume the functions uiT (vi, ai, a−i) are linear in an increas-

ing function of vi and supermodular in (vi, ai).

Theorem 2. Consider a game Γ that satisfies Assumption 4 and its associated

Bayesian game ΓB. For any vector of equilibrium strategies
{
S̃i

}
i∈N

of ΓB the

strategies defined by Si (v, t) = S̃i (ei (v, t)) are an equilibrium for Γ, where the

function ei (v, t) is the self-generating expectation for player i.

Proof. Let Ui (viT , aiT ) = Ea−iT
u (viT , aiT , a−iT |S−i), that is, the expected final

payoff given viT , aiT after integrating out the strategies of the other players.

Assumption 4 implies that Ui is linear in v and supermodular. This payoff

function and the stochastic process Pi for values and decision times define a

dynamic decision problem that satisfies the assumptions of Theorem 1. Since
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S̃i is a best response for agent i in the Bayesian game, it follows that almost

surely for ṽ in the support of Ψi

UiT

(
ṽ, S̃i (ṽ)

)
= Ea−i

uiT

(
ṽ, S̃i (ṽ) , a−i|S−i

)
≥ Ea−i

uiT (ṽ, a, a−i|S−i) = UiT (ṽ, a)

for all aεAi. So, S̃i (ṽ) is an optimal solution for any equivalent final value ṽ and

thus the corresponding Si as defined is an optimal strategy for the dynamic

decision problem defined by the best response. As a result, the strategy vector

{Si}i∈N is a Nash equilibrium for game Γ.

Our result decomposes the problem of finding an equilibrium to the dynamic

game Γ into two steps: (1) a dynamic decision problem—that of finding

the equivalent final values—and (2) a static equilibrium determination—the

Bayesian game. This decomposition can be achieved because this dynamic

decision problem is determined by the stochastic process for values and deci-

sion times independently of the strategies of other players. The actual choices

made in the dynamic decision problem do depend on the strategies of others,

but not the determination of equivalent final values. Loosely speaking, the dy-

namic problem determines the indifference maps (the function e (v, t)), while

the solution to the Bayesian game labels them with the actions.

This decomposition can be very useful in applications. As an example, con-

sider the dynamic contest described earlier. An optimal payoff structure can

be designed simply by considering the static Bayesian game defined by the

corresponding distributions of final equivalent values.

The decomposition described above is possible in part from our assumption

that no information from other players’ actions or values is revealed throughout

the game. For some special cases, this assumption can be relaxed. In partic-

ular, if for all vi there is a weakly dominant action choice ai that maximizes

u (vi, ai, a−i) for all a−i, the equilibrium derived above remains an equilibrium

of the dynamic game with any added information about opponents’ values

and strategies. This assumption holds, for example, in the case of a dynamic
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second price auction as described in Section 6. This method can also be use-

ful when considering the question of implementation in dominant strategies.

Another potential setting for our method is similar to that of Bonatti et al.

[2017], where in a dynamic Cournot setting sellers have incomplete informa-

tion about their rivals: sellers observe the revenue process but not individual

rivals’ actions.

4.4 Value Shading

Our leading example suggests that agents will shade values, and consequently

actions, as a result of the adverse selection problem introduced by the option of

future decision opportunities and the irreversibility of decisions. Value shad-

ing is defined by the property that early in the decision process agents make

choices as if the final values were lower than the conditional expectation.13

Value shading arises because of the irreversibility of actions, the opportunity

of making future choices, and the arrival of new information concerning the

final value. Two of the key forces determining the extent of shading are the

likelihood of future decision nodes and the extent of new information received

as measured by the conditional variance of expected final values. The results

in this section deal with conditions relating to the former, while the role of

the variability of values is discussed in Section 5.2. Our first result in this

section concerns the general existence of value shading. We next discuss the

conditions under which value shading decreases over time as the end period

approaches.

Proposition 2. e (v, t) ≤ E [vT |v, t].

A strong inequality can be obtained under very weak conditions that are given

in the following assumptions.

13Value shading can occur for strategic reasons; for example, in Hortaçsu et al. [2015], it
is a result of dealer market power in uniform-price Treasury bill auctions. Our source of
shading is distinct and fundamentally non-strategic.
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Assumption 5. For all t < T,
´
N(v,t)

vT (ω) dΠ (ω|v, t) is strictly increasing

in v.

This assumption would immediately hold given the martingale property if

expected values are independent of arrival times.

Assumption 6. For all t < T and v,
´
v′>v,t<t′<T

dP (v′, t′|v, t) > 0.

When the process is independent of the arrival time t′, this assumption holds

if the probability of a future arrival is strictly positive and the conditional

distribution for value is non-degenerate, i.e., P (v′ = v|v, t) < 1.

Proposition 3. If Assumptions 5 and 6 hold, then e (v, t) < E (vT |v, t).

In terms of decisions, shading of values implies shading of actions so that

S (v, t) ≤ S̃ (E [vT |v, t]).
To examine the evolution of shading over time, we first consider the case where

decision times are independent of values. Consistent with Assumption 2, the

distribution of future decision times τ ′ is a function of only the last arrival time

t; denote this by the cdf F (τ ′|t). The following proposition gives conditions

such that e (v, t) is increasing in t; therefore, the amount of shading will go

down over time.

Proposition 4. Assume that values and time arrivals are independent of each

other and that F (τ ′|t) is decreasing in t. Then e (v, t) is increasing in t.

It follows immediately that holding fixed values v, actions will be increasing

over time. The condition for the proposition follows immediately when the dis-

tribution of arrivals is independent of the initial time t, so F (τ ′|t) = G (τ ′ − t)
for some cdf G.14 While the assumptions of this proposition cover many rele-

vant cases, some other useful ones are excluded. In particular, this proposition

14This last assumption rules out the cases where a recent arrival might accelerate the
onset of future ones. As an example, suppose there are two possible states of nature, one
where arrivals never occur and one where there is a Poisson arrival rate λ of this happening
at any time. In addition, assume that in both states of nature there is an arrival for sure at
time zero. If a second arrival occurs at some time t > 0, then F (τ ′|t) = 1− exp (λ (τ ′ − t))
can be greater than F (τ ′|0) if the initial prior is sufficiently pessimistic.
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assumes that the new arrival τ ′ and the new value v′ are independent, exclud-

ing learning environments where information is accumulated over time prior

to the next decision node, as considered in Section 6. The following propo-

sition provides an alternative set of sufficient conditions that apply to those

situations.

Proposition 5. Suppose that P (v′, τ ′|v, t) = Pv (v′|v, τ ′ − t)F (τ ′ − t). Then

e (v, t) is increasing in t.

The assumptions in this proposition require that the time to the next decision

node be independent of current calendar time t, and that the next value v′

depend only on v and the time elapsed until this next opportunity.

5 Extension and Special Cases

We first consider an extension to the case where the ending time T is ran-

dom and re-examine the aforementioned properties of shading over time. We

subsequently analyze two special cases of practical importance where the de-

termination of equivalent final values is greatly simplified and shading is either

independent or proportional to value, so it is only a function of time t.

5.1 Random Termination

We have assumed that the decision problem lasts for a fixed time [0, T ]. Our

formulation allows for random termination without modification. Consider

equation (12), repeated below, which is the key equation used to find the

self-generated expectation:

W (ε, v, t) =

ˆ T

t
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
+

ˆ
N(v,t)

(vT (ω)− ε) dΠ (ω|v, t) .
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We can consider T in this equation as a random termination without any

changes, with a slightly different interpretation: the term P (v′, τ ′|v, t) can be

interpreted as the probability of the event that the next decision node is τ ′

and that τ ′ < T (i.e., the decision problem has not ended by then). Similarly,

the second term, N (v, t), can be interpreted as the set of paths following

(v, t) where the random termination occurs before the next arrival. With this

change of interpretation, the same equation applies and so are all the results

that follow.

It is useful to examine the conditions of Proposition 4 in light of this reinter-

pretation. Rewriting the assumption as F (τ ′ − T, t) stochastically increasing

in t (which in the case of deterministic T is equivalent to the condition given

in Proposition 4), the result follows. This is now an assumption regarding the

difference between the two random variables, τ ′ and T. The following corollary

gives sufficient conditions for this assumption to hold.

Corollary 1. Let H (y|t) = P (T − t ≤ y|t) denote the cdf for the remaining

time of the decision problem conditional on T ≥ t. Let G (x|t) = P (τ ′ − t ≤ x|t)
denote the conditional cdf of the time to the next arrival. Assume that τ ′ and

T are conditionally independent given t and

1. H (y, t) is weakly increasing in t and

2. G (x|t) is weakly decreasing in t.

Then F (τ ′ − T |t) is (weakly) decreasing and e (v, t) is (weakly) increasing in

t.

Proof. Note that τ ′−T = τ ′−t−(T − t) . Let (T − t) = x so P (τ ′ − T ≤ z|t, x) =

P (τ ′ − t ≤ z + x) = G (z + x|t). Integrating over x results in F (z|t) =
´
G (z + x|t) dH (x|t).

By the second assumption, the integrand is point-wise decreasing in t. By the

first assumption, the distribution H is stochastically decreasing in t and, since

G is an increasing function, it also implies that the integral is decreasing in

t. This proves that F (z|t) is decreasing in t. The second conclusion follows

directly from Proposition 4.
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The assumptions of this corollary have an intuitive interpretation. The sec-

ond one is the analogue of the assumption made in Proposition 4. The first

assumption simply states that the hazard rate for termination of the decision

time increases with duration, which seems a natural assumption in the case

of random termination. These assumptions imply that the level curves for

self-generated expectations are decreasing, as depicted in Figure 1. In the

special—time stationary—case where both conditional distributions G and H

are independent of t, W (ε, v, t) and ε (v, t) will also be independent of t, so

the level curves will be flat. Shading will still occur but will not change over

time.

5.2 Independent Increments

We consider two special cases that come up frequently in applications, where

the derivation of optimal strategies is considerably simplified: (1) increments

in value independent of the current value v and (2) increments in value propor-

tional to v. In particular, these conditions apply to the cases where v follows

an arithmetic and geometric Brownian motion, respectively. In both cases, we

assume that decision times are given by a homogeneous Poisson process that

is independent of the past realized signals {vn}. These assumptions consider-

ably simplify the derivation of shading that becomes either independent from

or proportional to v. In addition, we provide a new result connecting shading

to the variance of innovations.

Proposition 6. Assume P (v′ = v + δ|v, t) is independent of v for all δ and

all t, and decision times are independent of v. Then

W (ε+ δ, v + δ, t) = W (ε, v, t) ,∀ε, δ, v ∈ R, t ∈ R+

and consequently e (v + δ, t) = e (v, t) + δ.

Proof. We have previously shown that the functional equation (12) is a con-

traction mapping. Assume that W has the property stated above. It follows

33



that

TW (ε+ δ, v + δ, t) =

ˆ T

t

min (W (ε+ δ, v′ + δ, τ ′) , 0) dP (v′ + δ, τ ′|v + δ, t)

+

ˆ
N(v,t)

(vT (ω) + δ − (ε+ δ)) dΠ (ω + δ|v + δ, t)

=

ˆ T

t

min (W (ε, v′, τ ′) , 0) dP (v′, τ ′|v, t) +

ˆ
N(v,t)

(vT (ω)− ε) dΠ (ω|v, t)

= TW (ε, v, t) .

This property is thus preserved under the functional equation and is clearly

closed in the space of continuous and bounded functions under the sup norm.

Therefore, it must hold for the unique fixed point. The second property stated

in the proposition follows immediately from the definition of a self-generated

expectation.

Letting δ = −ε, the above proposition implies that W (ε, v, t) = W (0, v − ε, t).
Letting s = v − ε, functional equation (12) can be written as

W (s, t) =

ˆ T

t
min

(
W
(
s+ z, τ ′

)
, 0
)
dF (z) +

ˆ
N(s,t)

(sT (ω)) dΠ (ω|s, t) ,

where F is the distribution of the increments. Defining s (t) implicitly byW (s (t) , t) =

0, equivalent final values e (v, t) = v − s (t), so the shading factor s (t) thus defined

is independent of t.

Consider now the case where P (γv′, τ ′|γv, t) = P (v′, τ ′|v, t) , which, as the

next proposition shows, implies that W (γε, γv, t) = γW (ε, v, t) .

Proposition 7. Assume P (γv′, τ ′|γv, t) = P (v′, τ ′|v, t) for all γ, v, v′ ∈ R, t, τ ′ ∈
R+. Then W (γε, γv, t) = γW (ε, v, t) for all ε, γ, v ∈ R, t ∈ R+ and conse-

quently e (γv, t) = γe (v, t) .

Proof. The proof follows a similar inductive argument as in the previous propo-
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sition. Assume the function W has this property. Then evaluate

TW (γε, γv, t) =

ˆ T

t

min (W (γε, γv′, τ ′) , 0) dP (γv′, τ ′|γv, t)

+

ˆ
N(v,t)

(γvT (ω)− γε) dΠ (γω|γv, t)

=

ˆ T

t

min (γW (ε, v′, τ ′) , 0) dP (v, τ ′|v, t) +

ˆ
N(v,t)

γ (vT (ω)− ε) dΠ (ω|v, t)

= γTW (ε, v, t) .

This property is thus preserved under the functional equation and is clearly

closed in the space of continuous and bounded functions under the sup norm.

Therefore, it must hold for the unique fixed point. The second property stated

in the proposition follows immediately from the definition of a self-generated

expectation.

Shading over Time with Independent Increments While the proposi-

tions derived in Section 5.2 apply to this special case, an additional intuitive

and useful result can be proved. A natural question is how the variance of new

values affects shading, as it affects the option value of future actions. In the

extreme, if variance were zero so v (T ) = v with probability one, there would

be no shading. We prove a monotonicity result for the case of independent

increments considered in Proposition 6.

Proposition 8. Under the assumptions of Proposition 6, W is concave in v. A

mean preserving increase in spread of the distribution of increments decreases

e (v, t).

Shading Over Time and Learning Note that while the assumptions re-

quire that the next arrival τ ′ be independent of current value v, they do not

require that the next value v′ be independent from either t or τ ′.

In a Bayesian learning environment, the weight of new information decreases

over time and so does the variance of the change in the posterior, which gives
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another reason for decreasing the level of shading over time. As an example,

consider an environment where the signals for the value vT are given by a

Brownian motion with drift vT , where vT is itself drawn from a normal dis-

tribution with known mean and variance. The history at time t is the state

of the Brownian motion x (t) . Letting v0 be the mean of the distribution of

vT , σ0 its variance, and σ the volatility of the Brownian motion, the posterior

mean at time t is

v (t) = x0
1/σ0

1/σ0 + t/σ
+
x (t)

t

t/σ

1/σ0 + t/σ
,

and the variance is 1/ (1/σ0 + t/σ) . Together with an independent arrival pro-

cess for decision nodes, this formula can be used recursively to define the

Markov process P (v′, t′|v, t) that satisfies the assumption of independent in-

crements in Proposition 6. As the variance of the increments decreases over

time, Proposition 8 implies that shading decreases over time.

6 Two Detailed Applications

To show that our method can be numerically applied to dynamic games, we

now consider two applications. The first one concerns long auctions, devel-

oped in Hopenhayn and Saeedi [2020]. This application also derives an easily

solvable partial differential equation to derive the shading function when val-

ues follow a Brownian motion. The second application considers a special

case of anonymous sequential games, which were introduced by Jovanovic and

Rosenthal [1988].

6.1 Long Auctions

Many auctions take place over a considerable length of time; such is the case of

trading platforms (e.g., eBay, GovDeals) and other settings (e.g., procurement,

spectrum). As a result, dynamic considerations can be important for under-

standing bidding behavior and improving auction design. In particular, during
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these long auctions, bidders’ valuations and strategies are likely to be affected

by information that arrives during the auction; yet most of the literature has

abstracted from this feature.15 Here, changes in value could come from several

sources: the existence of alternatives that change the outside value (modeled

here exogenously), preference shocks (e.g., change of plans when buying event

tickets), cost or capacity shocks (as in electricity markets, see Ito and Reguant

[2016]), information regarding complementary goods (as in the case of spec-

trum auctions, see Börgers and Dustmann [2005] and Bulow et al. [2009]), and

alternative demands for use of resources in the face of capacity constraints

(as in procurement auctions, see Jofre-Bonet and Pesendorfer [2003]). We

estimate a model that fits in the class of games described above.

The specification is as follows. The value v (t) follows a Brownian motion with
zero drift and volatility σ, and the process for rebidding is Poisson with arrival
ρ. The functional equation (12) can be rewritten as

W (ε, v, t) = ρ

ˆ T

t

exp (−ρ (τ ′ − t))
ˆ

min
(

0,W
(
ε, v +

√
τ ′ − tσz, τ ′

))
dΦ (z) dτ ′(14)

+ exp (−ρ (T − t)) (v − ε) .

Note that by Proposition 4, e (v, t) is increasing in t.

Our specification satisfies the condition in Proposition 6 soW (ε, v, t) = W (0, v − ε, t).
In consequence, we can write the value function W̃ (x, t) where x = v − ε,

W̃ (x, t) = ρ

ˆ T

t

exp (−ρ (τ ′ − t))
ˆ

min
(

0, W̃
(
x+
√
τ ′ − tσz, τ ′

))
dΦ (z) dτ ′ (15)

+ exp (−ρ (T − t))x.

To numerically compute the shading function, it is more convenient to solve

15There is also a literature strand on modeling and estimating dynamics across auctions.
The classic paper is Jofre-Bonet and Pesendorfer [2003], which estimates dynamic auctions
in procurement by controlling for the utilized capacity of participants. More recent papers
that consider the option value faced by bidders in sequential auctions include Zeithammer
[2006], Said [2011], Hendricks and Sorensen [2015], Backus and Lewis [2012], Bodoh-Creed
et al. [2016], and Coey et al. [2015]. As a result of this option value, changes in the available
alternative items can alter the reservation price for bidders over time. While these papers
focus on dynamic bidding across auctions, they assume that bidding within each auction
happens instantaneously. Nevertheless, these papers motivate our reduced-form approach
toward the change in valuation to be a result of changes in these outside options.
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for the value function W̃ using the PDE corresponding to the above Bellman
equation (the Hamilton-Jacobi equation). To do so, consider a small interval
[t, t+ ∆] and subtract W̃ (x, t) to rewrite the Bellman equation as follows:

0 = ρ

ˆ t+∆

t

exp (−ρ (τ ′ − t))
ˆ [

min
(

0, W̃
(
x+
√
τ ′ − tσz, τ ′

))
− W̃ (x, t)

]
dΦ (z) dτ ′(16)

+ exp (−ρ∆)

[ˆ
W̃
(
x+
√

∆σz, t+ ∆
)
− W̃ (x, t)

]
dΦ (z) .

Taking derivative with respect to ∆ and evaluating at ∆ = 0 results in the

following PDE

0 = ρ
[
min

(
0,−W̃ (x, t)

)]
+

1

2
σ2 ∂

2

∂x2
W̃ (x, t) +

∂

∂t
W̃ (x, t) .

This PDE belongs to a standard class and can be easily solved with numerical

methods. Once this function is derived, optimal shading can be obtained by

finding the root W̃ (s, t) = 0.

In Hopenhayn and Saeedi [2020], this model is estimated with eBay and Gov-

Deals data. The estimates show considerable shading and explain a consider-

able amount of skewness in bidding times. The model is then used to perform

a series of counterfactuals and to assess the implications of alternative designs

on bidders’ welfare and sellers’ revenue.

6.2 Anonymous Sequential Game

Consider a stationary population of agents. Time is discrete. Each period

an agent continues in the game with probability δ and a value v that follows

a Markov process with conditional distribution F (v′|v). Exiting agents are

replaced by new ones with values v drawn from some initial distribution G (v) .

At each of these decision nodes, the agent chooses whether to increase its

capital k by ∆k at unit cost c and is then faced with a random match to

a subset of other players in the population. Profits in the period (gross of

investment costs) are given by π
(
v, k, k̃

)
, where k̃ is the vector of capital

of other competing agents. Assume this is linear in v and supermodular in
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v, k. For simplicity, suppose the Markov process has independent increments

so that v′ = v+z, where z has cdf Φ (z). Define the payoff function as follows:

u
(
v, k, k̃

)
= 1

1−δ

(
π
(
v, k, k̃

)
− ck

)
.

We consider a stationary equilibrium where the measure over firm capital

stocks µ (k) is time invariant. Each period, competing firms are drawn ran-

domly from the corresponding distribution. A stationary equilibrium is given

by investment strategies k′ = g (v, k, µ) that solve the firm’s dynamic problem

of capital accumulation and such that µ is an invariant measure generated by

these decision rules.

We explain now how to derive the stationary equilibrium using our approach.
Given the assumption of independent increments and noting that as a conse-
quence of stationarity there is no time argument, shading is given by a shift s
independent of v so that e (v) = v−s. The shading factor s satisfies W̃ (s) = 0,
where the function W̃ is the solution to functional equation

W̃ (x) = δ

ˆ
min

(
0, W̃ (x+ z)

)
dΦ (z) + (1− δ)x.

Having solved for s, we can define the distribution of equivalent final values for

a player. Letting vt denote the random value at time t, then the distribution of

equivalent final values for a given player is the mixture of the random variable

vt − s for t = 1, ... with weights (1− δ) δt−1, as explained in Section 3.1. In

the symmetric case this can be interpreted as the distribution from which all

competitors in a period draw their values. The steps for finding the equilibrium

and estimating parameters to match moments in the data are explained below.

For comparison, we describe first the standard nested fixed point algorithm

that is used in practice.

Solving this through a nested fixed point algorithm would require the following

steps:

1. Derive a stationary distribution of values F (v).

2. Outer fixed point:

(a) Choose the estimated parameters θ of the payoff function.
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(b) Inner fixed point:

i. Guess a strategy k (v) for all players.

ii. Solve the dynamic problem for an agent to get the best response

strategy. Define this as a new guess for strategy.

iii. Get new strategies for all players.

(c) Adjust parameters θ until a good match to the data is obtained.

Using our method, the steps would be:

1. Find equivalent values (in this case the scalar s).

2. Derive the stationary distribution of equivalent values (this is the same

distribution as in step 1 of the previous procedure, shifted by the shading

factor s).

3. Outer fixed point:

(a) Choose the estimated parameters θ of the payoff function.

(b) Inner fixed point:

i. Guess the strategies k (v) for all players.

ii. Calculate the static best responses solving the static problem

k (v) = arg max
k

ˆ
u
(
k, k̃ (ṽ) , v − s

)
dF (ṽ) .

iii. Get new strategies for all players.

(c) Adjust parameters θ until a good match to the data is obtained.

While in both cases a dynamic programming problem needs to be solved, the

nested fixed point algorithm requires this to be done in the most inner loop

(for each parameter vector θ and each strategy of other players), while in our

setting it is done only once.

A simple solution to our first step can be found for the following stochastic

process. Assume that with probability (1− p) the value continues to be the
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same, while with probability p it is drawn again from distribution F (v) .16 It

easily follows that

e (v) =
(1− δ (1− p (1− F (v)))) v + δp

´ v
ydF (y)

1− δ (1− p) .

This is a weighted average of v and E (y|y ≤ v), so it is clearly lower than v.

Accordingly, the agent behaves as if the value v where lower.

7 Final Remarks

In this paper we considered a general theory for dynamic decision problems

with an extension to dynamic games of imperfect information. The theory

relies on a simple yet rich structure with potentially broad applicability. The

problem of finding optimal actions or equilibria in the dynamic setting is re-

duced to solving for the corresponding optimal actions or equilibria in an

equivalent static setting with respect to a distribution of values that is inde-

pendent of the decision problem, making this general class very tractable.

The values and actions in this static problem are shaded because of the op-

tion of future actions, and under mild conditions, the incentives for shading

decrease as the decision problem progresses. This shading contributes to delay

and underinvestment in the early stages of decision problems.

The theory could be extended in several directions. It seems that risk aversion

can be introduced relatively easily by defining the self-generated expectations

in terms of certainty equivalent values. Our methods might also extend to

the case of some information revelation during the game, with the obvious

complication that self-generated expectations would require to be solved jointly

across all players.

The analysis of dynamic games has proven to be a difficult problem. There are

obvious trade-offs in research and corners to cut. Our paper is no exception

16Note that this stochastic process does not have independent increments.
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and we have our share of strong assumptions. In particular, we have chosen

to represent the impact of information on values, alternatives and opportu-

nities, and the existence of decision time frictions in a reduced form, given

by the stochastic process for values and decision time opportunities. There

are obvious shortcomings, but the payoff is a parsimonious representation of

equilibria and a very tractable general structure that could be easily used in

further applications.
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